34 research outputs found

    Abundance gradients in the Milky Way for alpha elements, Iron peak elements, Barium, Lanthanum and Europium

    Full text link
    We model the abundance gradients in the disk of the Milky Way for several chemical elements (O, Mg, Si, S, Ca, Sc, Ti, Co, V, Fe, Ni, Zn, Cu, Mn, Cr, Ba, La and Eu), and compare our results with the most recent and homogeneous observational data. We adopt a chemical evolution model able to well reproduce the main properties of the solar vicinity. We compute, for the first time, the abundance gradients for all the above mentioned elements in the galactocentric distance range 4 - 22 kpc. The comparison with the observed data on Cepheids in the galactocentric distance range 5-17 kpc gives a very good agreement for many of the studied elements. In addition, we fit very well the data for the evolution of Lanthanum in the solar vicinity for which we present results here for the first time. We explore, also for the first time, the behaviour of the abundance gradients at large galactocentric distances by comparing our results with data relative to distant open clusters and red giants and select the best chemical evolution model model on the basis of that. We find a very good fit to the observed abundance gradients, as traced by Cepheids, for most of the elements, thus confirming the validity of the inside-out scenario for the formation of the Milky Way disk as well as the adopted nucleosynthesis prescriptions.Comment: 11 pages, 9 figures, accepted for publication in A&

    Feedback and metal enrichment in cosmological SPH simulations I. A model for chemical enrichment

    Get PDF
    We discuss a model for treating chemical enrichment by SNII and SNIa explosions in simulations of cosmological structure formation. Our model includes metal-dependent radiative cooling and star formation in dense collapsed gas clumps. Metals are returned into the diffuse interstellar medium by star particles using a local SPH smoothing kernel. A variety of chemical abundance patterns in enriched gas arise in our treatment owing to the different yields and lifetimes of SNII and SNIa progenitor stars. In the case of SNII chemical production, we adopt metal-dependent yields. Because of the sensitive dependence of cooling rates on metallicity, enrichment of galactic haloes with metals can in principle significantly alter subsequent gas infall and the build up of the stellar components. Indeed, in simulations of isolated galaxies we find that a consistent treatment of metal-dependent cooling produces 25% more stars outside the central region than simulations with a primordial cooling function. In the highly-enriched central regions, the evolution of baryons is however not affected by metal cooling, because here the gas is always dense enough to cool. A similar situation is found in cosmological simulations because we include no strong feedback processes which could spread metals over large distances and mix them into unenriched diffuse gas. We demonstrate this explicitly with test simulations which adopt super-solar cooling functions leading to large changes both in the stellar mass and in the metal distributions. We also find that the impact of metallicity on the star formation histories of galaxies may depend on their particular evolutionary history. Our results hence emphasise the importance of feedback processes for interpreting the cosmic metal enrichment.Comment: 15 pages, 15 figures, MNRAS, modified to match published versio

    Populating a cluster of galaxies - I. Results at z=0

    Get PDF
    We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star-formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about 2.0e7 dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N-body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology-radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.Comment: 28 pages, submitted to MNRA

    La telemedicina, herramienta para mejorar nuestros cuidados a los pacientes trasplantados de corazón

    No full text
    La posibilidad de controlar extrahospitalariamente a los pacientes trasplantados de corazón con el uso de la telemedicina, posibilita mayor comodidad al paciente, ahorro del gasto sanitario, evita la realización de biopsias cardíacas y mejora la calidad de los cuidados de enfermería en estos pacientes

    La telemedicina, herramienta para mejorar nuestros cuidados a los pacientes trasplantados de corazón

    No full text
    La posibilidad de controlar extrahospitalariamente a los pacientes trasplantados de corazón con el uso de la telemedicina, posibilita mayor comodidad al paciente, ahorro del gasto sanitario, evita la realización de biopsias cardíacas y mejora la calidad de los cuidados de enfermería en estos pacientes
    corecore