748 research outputs found

    Optimum Detection Location-Based Cooperative Spectrum Sensing in Cognitive Radio

    Get PDF
    Cognitive radio arises as a hot research issue in wireless communications recently, attributed to its capability of enhancing spectral efficiency and catering for the growing demand for bandwidth. As a good embodiment of cognitive radio’s unique feature, i.e. making use of every bit spectral resource, spectrum sensing plays a vital role in the implementation of cognitive radio. To alleviate negative effect on cooperative spectrum sensing brought by bit errors, we introduce a novel concept, i.e. Optimum Detection Location (ODL) and present two algorithms of different computational complexity for locating ODL, together with an ODL-Based cooperative spectrum sensing scheme, with the motivation to exploit the gain derived from geographic advantages and multiuser diversity. Numerical and simulation results both demonstrate that our proposed spectrum sensing scheme can significantly improve the sensing performance in the case of reporting channel with bit errors

    Aqueous U(VI) interaction with magnetic nanoparticles in a mixed flow reactor system: HR-XANES study

    Get PDF
    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L3 and M4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10-6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-Oaxial bond length for the magnetite compared to the maghemite system are present too

    Degradative Tubular Lysosomes Link Pexophagy To Starvation And Early Aging In C. Elegans

    Get PDF
    Organelle-specific autophagy directs degradation of eukaryotic organelles under certain conditions. Like other organelles, peroxisomes are subject to autophagic turnover at lysosomes. However, peroxisome autophagy (pexophagy) has yet to be analyzed in a live-animal system, limiting knowledge on its regulation during an animal\u27s life. Here, we generated a tandem-fluorophore reporter that enabled real-time tracking of pexophagy in live Caenorhabditis elegans. We observed that pexophagy occurred at a population of non-canonical, tubular lysosomes specifically during starvation and aging. Remarkably, in these contexts, tubular lysosomes were the predominant type of lysosome in the intestine, transforming from vesicles. Though we found that peroxisomes were largely eliminated in early adulthood, they appeared restored in new generations. We identified peroxisomal genes that regulated age-dependent peroxisome loss and demonstrated that modifying this process altered animal lifespan. These findings reveal new facets of peroxisome homeostasis relevant to aging and challenge the prevailing perception of lysosome homogeneity in autophagy

    QoS management and control for an all-IP WiMAX network architecture: Design, implementation and evaluation

    Get PDF
    The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS) requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks). One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator

    Applications of Two-Body Dirac Equations to the Meson Spectrum with Three versus Two Covariant Interactions, SU(3) Mixing, and Comparison to a Quasipotential Approach

    Full text link
    In a previous paper Crater and Van Alstine applied the Two Body Dirac equations of constraint dynamics to the meson quark-antiquark bound states using a relativistic extention of the Adler-Piran potential and compared their spectral results to those from other approaches, ones which also considered meson spectroscopy as a whole and not in parts. In this paper we explore in more detail the differences and similarities in an important subset of those approaches, the quasipotential approach. In the earlier paper, the transformation properties of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four vector, with the former accounting for the confining aspects of the overall potential, and the latter the short range portion. A part of that work consisted of developing a way in which the static Adler-Piran potential was apportioned between those two different types of potentials in addition to covariantization. Here we make a change in this apportionment that leads to a substantial improvement in the resultant spectroscopy by including a time-like confining vector potential over and above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows this formalism to account for the isoscalar mesons {\eta} and {\eta}' not included in the previous work. Continuing the comparisons made in the previous paper with other approaches to meson spectroscopy we examine in this paper the quasipotential approach of Ebert, Faustov, and Galkin for a comparison with our formalism and spectral results.Comment: Revisions of earlier versio

    Oqtans: a Galaxy-integrated workflow for quantitative transcriptome analysis from NGS Data : From Seventh International Society for Computational Biology (ISCB) Student Council Symposium 2011 Vienna, Austria. 15 July 2011

    Get PDF
    First published by BioMed Central: Schultheiss, Sebastian J.; Jean, GÊraldine; Behr, Jonas; Bohnert, Regina; Drewe, Philipp; GÜrnitz, Nico; Kahles, AndrÊ; Mudrakarta, Pramod; Sreedharan, Vipin T.; Zeller, Georg; Rätsch, Gunnar: Oqtans: a Galaxy-integrated workflow for quantitative transcriptome analysis from NGS Data - In: BMC Bioinformatics. - ISSN 1471-2105 (online). - 12 (2011), suppl. 11, art. A7. - doi:10.1186/1471-2105-12-S11-A7

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    U redox state and speciation of U in contact with magnetite nanoparticles : High resolution XANES, EXAFS, XPS and TEM study

    Get PDF
    In this work, redox states and speciation of U in U coprecipitated with and sorbed on magnetite nanoparticles are investigated by U M₄ HR-XANES, L₃ EXAFS, XPS and TEM techniques. Coexistence of U(V), U(IV) and U(VI) in varying ratios is clearly detect by the U M₄ HR-XANES technique. Mainly U(V) stable for more than 240 days of contact time is found In a coprecipitated sample with lowest U loading (1000 ppm U). Coprecipitated sample with highest U loading (10000 ppm) undergoes reduction to U(IV) within less than 7 days. Reduction kinetics of U and long term stability of U(V) is discussed for both batch sorption and coprecipitation systems

    Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential

    Get PDF
    Background: Previous work showed that the maize primary root adapts to low Ψw (-1.6 MPa) by maintaining longitudinal expansion in the apical 3 mm (region 1), whereas in the adjacent 4 mm (region 2) longitudinal expansion reaches a maximum in well-watered roots but is progressively inhibited at low Ψw. To identify mechanisms that determine these responses to low Ψw, transcript expression was profiled in these regions of water-stressed and well-watered roots. In addition, comparison between region 2 of water-stressed roots and the zone of growth deceleration in well-watered roots (region 3) distinguished stress-responsive genes in region 2 from those involved in cell maturation. Results: Responses of gene expression to water stress in regions 1 and 2 were largely distinct. The largest functional categories of differentially expressed transcripts were reactive oxygen species and carbon metabolism in region 1, and membrane transport in region 2. Transcripts controlling sucrose hydrolysis distinguished well-watered and water-stressed states (invertase vs. sucrose synthase), and changes in expression of transcripts for starch synthesis indicated further alteration in carbon metabolism under water deficit. A role for inositols in the stress response was suggested, as was control of proline metabolism. Increased expression of transcripts for wall-loosening proteins in region 1, and for elements of ABA and ethylene signaling were also indicated in the response to water deficit. Conclusion: The analysis indicates that fundamentally different signaling and metabolic response mechanisms are involved in the response to water stress in different regions of the maize primary root elongation zone

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin
    • …
    corecore