66 research outputs found

    Determination of enantiomeric compositions by transient absorption spectroscopy using proteins as chiral selectors

    Full text link
    Financial support from the MEC (Grant CTQ2007-67010 and predoctoral fellowship to C.J.B. and I. V.), from the Carlos III Institute of Health (Grant RIRAAF, RETICS program) and from the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged.Vayá Pérez, I.; Bueno Alejo, CJ.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2008). Determination of enantiomeric compositions by transient absorption spectroscopy using proteins as chiral selectors. Chemistry - A European Journal. 14(36):11284-11287. https://doi.org/10.1002/chem.200801657S11284112871436Finn, M. G. (2002). Emerging methods for the rapid determination of enantiomeric excess. Chirality, 14(7), 534-540. doi:10.1002/chir.10101Maier, N. M., Franco, P., & Lindner, W. (2001). Separation of enantiomers: needs, challenges, perspectives. Journal of Chromatography A, 906(1-2), 3-33. doi:10.1016/s0021-9673(00)00532-xPirkle, W. H., & Finn, J. M. (1981). Chiral high-pressure liquid chromatographic stationary phases. 3. General resolution of arylalkylcarbinols. The Journal of Organic Chemistry, 46(14), 2935-2938. doi:10.1021/jo00327a019Okamoto, Y., & Yashima, E. (1998). Chromatographische Enantiomerentrennung an Polysaccharidderivaten. Angewandte Chemie, 110(8), 1072-1095. doi:10.1002/(sici)1521-3757(19980420)110:83.0.co;2-qEdkins, T. J., & Bobbitt, D. R. (2001). Peer Reviewed: Miniaturization of Enantioselective Detectors. Analytical Chemistry, 73(17), 488 A-496 A. doi:10.1021/ac0124991Tsukamoto, M., & Kagan, H. B. (2002). Recent Advances in the Measurement of Enantiomeric Excesses. Advanced Synthesis & Catalysis, 344(5), 453. doi:10.1002/1615-4169(200207)344:53.0.co;2-uGuo, J., Wu, J., Siuzdak, G., & Finn, M. G. (1999). Bestimmung von Enantiomerenüberschüssen durch kinetische Racematspaltung und Massenspektrometrie. Angewandte Chemie, 111(12), 1868-1871. doi:10.1002/(sici)1521-3757(19990614)111:123.0.co;2-jGuo, J., Wu, J., Siuzdak, G., & Finn, M. G. (1999). Measurement of Enantiomeric Excess by Kinetic Resolution and Mass Spectrometry. Angewandte Chemie International Edition, 38(12), 1755-1758. doi:10.1002/(sici)1521-3773(19990614)38:123.0.co;2-qReetz, M. T., Becker, M. H., Klein, H.-W., & Stöckigt, D. (1999). Eine Methode zum High-Throughput-Screening von enantioselektiven Katalysatoren. Angewandte Chemie, 111(12), 1872-1875. doi:10.1002/(sici)1521-3757(19990614)111:123.0.co;2-gReetz, M. T., Becker, M. H., Klein, H.-W., & Stöckigt, D. (1999). A Method for High-Throughput Screening of Enantioselective Catalysts. Angewandte Chemie International Edition, 38(12), 1758-1761. doi:10.1002/(sici)1521-3773(19990614)38:123.0.co;2-8Markert, C., & Pfaltz, A. (2004). Screening of Chiral Catalysts and Catalyst Mixtures by Mass Spectrometric Monitoring of Catalytic Intermediates. Angewandte Chemie, 116(19), 2552-2554. doi:10.1002/ange.200453844Markert, C., & Pfaltz, A. (2004). Screening of Chiral Catalysts and Catalyst Mixtures by Mass Spectrometric Monitoring of Catalytic Intermediates. Angewandte Chemie International Edition, 43(19), 2498-2500. doi:10.1002/anie.200453844Reetz, M. T., Kühling, K. M., Deege, A., Hinrichs, H., & Belder, D. (2000). Super-Hochdurchsatz-Screening von enantioselektiven Katalysatoren mittels parallelisierter Kapillarelektrophorese. Angewandte Chemie, 112(21), 4049-4052. doi:10.1002/1521-3757(20001103)112:213.0.co;2-nReetz, M. T., Kühling, K. M., Deege, A., Hinrichs, H., & Belder, D. (2000). Super-High-Throughput Screening of Enantioselective Catalysts by Using Capillary Array Electrophoresis. Angewandte Chemie, 39(21), 3891-3893. doi:10.1002/1521-3773(20001103)39:213.0.co;2-1Abato, P., & Seto, C. T. (2001). EMDee:  An Enzymatic Method for Determining Enantiomeric Excess. Journal of the American Chemical Society, 123(37), 9206-9207. doi:10.1021/ja016177qVan Delden, R. A., & Feringa, B. L. (2001). Color Indicators of Molecular Chirality Based on Doped Liquid Crystals. Angewandte Chemie, 113(17), 3298-3300. doi:10.1002/1521-3757(20010903)113:173.0.co;2-eVan Delden, R. A., & Feringa, B. L. (2001). Color Indicators of Molecular Chirality Based on Doped Liquid Crystals. Angewandte Chemie International Edition, 40(17), 3198-3200. doi:10.1002/1521-3773(20010903)40:173.0.co;2-iTaran, F., Gauchet, C., Mohar, B., Meunier, S., Valleix, A., Renard, P. Y., … Mioskowski, C. (2002). High-Throughput Screening of Enantioselective Catalysts by Immunoassay. Angewandte Chemie, 114(1), 132-135. doi:10.1002/1521-3757(20020104)114:13.0.co;2-dTaran, F., Gauchet, C., Mohar, B., Meunier, S., Valleix, A., Renard, P. Y., … Mioskowski, C. (2002). High-Throughput Screening of Enantioselective Catalysts by Immunoassay. Angewandte Chemie International Edition, 41(1), 124-127. doi:10.1002/1521-3773(20020104)41:13.0.co;2-rLi, Z., Bütikofer, L., & Witholt, B. (2004). High-Throughput Measurement of the Enantiomeric Excess of Chiral Alcohols by Using Two Enzymes. Angewandte Chemie, 116(13), 1730-1734. doi:10.1002/ange.200353055Li, Z., Bütikofer, L., & Witholt, B. (2004). High-Throughput Measurement of the Enantiomeric Excess of Chiral Alcohols by Using Two Enzymes. Angewandte Chemie International Edition, 43(13), 1698-1702. doi:10.1002/anie.200353055Eelkema, R., van Delden, R. A., & Feringa, B. L. (2004). Direct Visual Detection of the Stereoselectivity of a Catalytic Reaction. Angewandte Chemie, 116(38), 5123-5126. doi:10.1002/ange.200460822Eelkema, R., van Delden, R. A., & Feringa, B. L. (2004). Direct Visual Detection of the Stereoselectivity of a Catalytic Reaction. Angewandte Chemie International Edition, 43(38), 5013-5016. doi:10.1002/anie.200460822Dey, S., Karukurichi, K. R., Shen, W., & Berkowitz, D. B. (2005). Double-Cuvette ISES:  In Situ Estimation of Enantioselectivity and Relative Rate for Catalyst Screening. Journal of the American Chemical Society, 127(24), 8610-8611. doi:10.1021/ja052010bMei, X., & Wolf, C. (2006). Determination of Enantiomeric Excess and Concentration of Unprotected Amino Acids, Amines, Amino Alcohols, and Carboxylic Acids by Competitive Binding Assays with a Chiral Scandium Complex. Journal of the American Chemical Society, 128(41), 13326-13327. doi:10.1021/ja0636486Reetz, M. T., Becker, M. H., Kühling, K. M., & Holzwarth, A. (1998). Zeitaufgelöste IR-thermographische Detektion und Screening von enantioselektiven katalytischen Reaktionen. Angewandte Chemie, 110(19), 2792-2795. doi:10.1002/(sici)1521-3757(19981002)110:193.0.co;2-2Reetz, M. T., Becker, M. H., Kühling, K. M., & Holzwarth, A. (1998). Time-Resolved IR-Thermographic Detection and Screening of Enantioselectivity in Catalytic Reactions. Angewandte Chemie International Edition, 37(19), 2647-2650. doi:10.1002/(sici)1521-3773(19981016)37:193.0.co;2-iDing, K., Ishii, A., & Mikami, K. (1999). Super-High-Throughput-Screening chiraler Liganden und Aktivatoren: asymmetrische Aktivierung chiraler Diol-Zink-Katalysatoren durch chirale Stickstoffaktivatoren für die enantioselektive Addition von Diethylzink an Aldehyde. Angewandte Chemie, 111(4), 519-523. doi:10.1002/(sici)1521-3757(19990215)111:43.0.co;2-6Ding, K., Ishii, A., & Mikami, K. (1999). Super High Throughput Screening (SHTS) of Chiral Ligands and Activators: Asymmetric Activation of Chiral Diol-Zinc Catalysts by Chiral Nitrogen Activators for the Enantioselective Addition of Diethylzinc to Aldehydes. Angewandte Chemie International Edition, 38(4), 497-501. doi:10.1002/(sici)1521-3773(19990215)38:43.0.co;2-gYannoni, C. S. (1982). High-resolution NMR in solids: the CPMAS experiment. Accounts of Chemical Research, 15(7), 201-208. doi:10.1021/ar00079a003Tekely, P., Gardiennet, C., Potrzebowski, M. J., Sebald, A., Reichert, D., & Luz, Z. (2002). Probing molecular geometry of solids by nuclear magnetic resonance spin exchange at the n=0 rotational-resonance condition. The Journal of Chemical Physics, 116(17), 7607-7616. doi:10.1063/1.1465416Potrzebowski, M. J., Tadeusiak, E., Misiura, K., Ciesielski, W., Bujacz, G., & Tekely, P. (2002). A New Method for Distinguishing between Enantiomers and Racemates and Assignment of Enantiomeric Purity by Means of Solid-State NMR. Examples from Oxazaphosphorinanes. Chemistry - A European Journal, 8(21), 5007-5011. doi:10.1002/1521-3765(20021104)8:213.0.co;2-bEvans, M. A., & Morken, J. P. (2002). Isotopically Chiral Probes for in Situ High-Throughput Asymmetric Reaction Analysis. Journal of the American Chemical Society, 124(31), 9020-9021. doi:10.1021/ja026703tJames, T. D., Samankumara Sandanayake, K. R. A., & Shinkai, S. (1995). Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature, 374(6520), 345-347. doi:10.1038/374345a0(s. f.). doi:10.1021/ja984139Beer, G., Daub, J., & Rurack, K. (2001). Chiral discrimination with a fluorescent boron–dipyrromethene dye. Chemical Communications, (12), 1138-1139. doi:10.1039/b102376bZhao, J., Fyles, T. M., & James, T. D. (2004). Chiral Binol–Bisboronic Acid as Fluorescence Sensor for Sugar Acids. Angewandte Chemie, 116(26), 3543-3546. doi:10.1002/ange.200454033Zhao, J., Fyles, T. M., & James, T. D. (2004). Chiral Binol–Bisboronic Acid as Fluorescence Sensor for Sugar Acids. Angewandte Chemie International Edition, 43(26), 3461-3464. doi:10.1002/anie.200454033Pu, L. (2004). Fluorescence of Organic Molecules in Chiral Recognition. Chemical Reviews, 104(3), 1687-1716. doi:10.1021/cr030052hLi, Z.-B., Lin, J., Qin, Y.-C., & Pu, L. (2005). Enantioselective Fluorescent Recognition of a Soluble «Supported» Chiral Acid:  Toward a New Method for Chiral Catalyst Screening. Organic Letters, 7(16), 3441-3444. doi:10.1021/ol0510163Matsushita, M., Yoshida, K., Yamamoto, N., Wirsching, P., Lerner, R. A., & Janda, K. D. (2003). High-Throughput Screening by Using a Blue-Fluorescent Antibody Sensor. Angewandte Chemie, 115(48), 6166-6169. doi:10.1002/ange.200352793Matsushita, M., Yoshida, K., Yamamoto, N., Wirsching, P., Lerner, R. A., & Janda, K. D. (2003). High-Throughput Screening by Using a Blue-Fluorescent Antibody Sensor. Angewandte Chemie International Edition, 42(48), 5984-5987. doi:10.1002/anie.200352793Hamberg, A., Lundgren, S., Penhoat, M., Moberg, C., & Hult, K. (2006). High-Throughput Enzymatic Method for Enantiomeric Excess Determination of O-Acetylated Cyanohydrins. Journal of the American Chemical Society, 128(7), 2234-2235. doi:10.1021/ja058474rBusch, K. W., Swamidoss, I. M., Fakayode, S. O., & Busch, M. A. (2003). Determination of the Enantiomeric Composition of Guest Molecules by Chemometric Analysis of the UV−Visible Spectra of Cyclodextrin Guest−Host Complexes. Journal of the American Chemical Society, 125(7), 1690-1691. doi:10.1021/ja025947aFakayode, S. O., Busch, M. A., Bellert, D. J., & Busch, K. W. (2005). Determination of the enantiomeric composition of phenylalanine samples by chemometric analysis of the fluorescence spectra of cyclodextrin guest–host complexes. The Analyst, 130(2), 233-241. doi:10.1039/b405478dABE, Y., YASUOKA, S., SHOJI, T., SUGATA, S., HATTORI, K., IWATA, K., & SUZUKI, H. (2002). Peculiar Chiral Discrimination of Bovine Serum Albumin to (.+-.)-N-Dansyl-norleucine. Analytical Sciences, 18(7), 823-825. doi:10.2116/analsci.18.823Hamblin, J., Abboyi, N., & Lowe, M. P. (2005). A binaphthyl-containing Eu(iii) complex and its interaction with human serum albumin: a luminescence study. Chemical Communications, (5), 657. doi:10.1039/b415464aSingh, S. S., & Mehta, J. (2006). Measurement of drug–protein binding by immobilized human serum albumin-HPLC and comparison with ultrafiltration. Journal of Chromatography B, 834(1-2), 108-116. doi:10.1016/j.jchromb.2006.02.053Hödl, H., Koidl, J., Schmid, M. G., & Gübitz, G. (2006). Chiral resolution of tryptophan derivatives by CE using canine serum albumin and bovine serum albumin as chiral selectors. ELECTROPHORESIS, 27(23), 4755-4762. doi:10.1002/elps.200600425Martínez-Gómez, M. A., Sagrado, S., Villanueva-Camañas, R. M., & Medina-Hernández, M. J. (2007). Enantioseparation of phenotiazines by affinity electrokinetic chromatography using human serum albumin as chiral selector. Analytica Chimica Acta, 582(2), 223-228. doi:10.1016/j.aca.2006.09.036Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061Bohne, C., Barra, M., Boch, R., Abuin, E. B., & Scaiano, J. C. (1992). Excited triplet states as probes in organized systems. An overview of recent results. Journal of Photochemistry and Photobiology A: Chemistry, 65(1-2), 249-265. doi:10.1016/1010-6030(92)85050-5Jiménez, M. C., Miranda, M. A., Tormos, R., & Vayá, I. (2004). Characterisation of the lowest singlet and triplet excited states of S-flurbiprofen. Photochem. Photobiol. Sci., 3(11-12), 1038-1041. doi:10.1039/b408530

    Identification of the Microsporidian Encephalitozoon cuniculi as a New Target of the IFNγ-Inducible IRG Resistance System

    Get PDF
    The IRG system of IFNγ-inducible GTPases constitutes a powerful resistance mechanism in mice against Toxoplasma gondii and two Chlamydia strains but not against many other bacteria and protozoa. Why only T. gondii and Chlamydia? We hypothesized that unusual features of the entry mechanisms and intracellular replicative niches of these two organisms, neither of which resembles a phagosome, might hint at a common principle. We examined another unicellular parasitic organism of mammals, member of an early-diverging group of Fungi, that bypasses the phagocytic mechanism when it enters the host cell: the microsporidian Encephalitozoon cuniculi. Consistent with the known susceptibility of IFNγ-deficient mice to E. cuniculi infection, we found that IFNγ treatment suppresses meront development and spore formation in mouse fibroblasts in vitro, and that this effect is mediated by IRG proteins. The process resembles that previously described in T. gondii and Chlamydia resistance. Effector (GKS subfamily) IRG proteins accumulate at the parasitophorous vacuole of E. cuniculi and the meronts are eliminated. The suppression of E. cuniculi growth by IFNγ is completely reversed in cells lacking regulatory (GMS subfamily) IRG proteins, cells that effectively lack all IRG function. In addition IFNγ-induced cells infected with E. cuniculi die by necrosis as previously shown for IFNγ-induced cells resisting T. gondii infection. Thus the IRG resistance system provides cell-autonomous immunity to specific parasites from three kingdoms of life: protozoa, bacteria and fungi. The phylogenetic divergence of the three organisms whose vacuoles are now known to be involved in IRG-mediated immunity and the non-phagosomal character of the vacuoles themselves strongly suggests that the IRG system is triggered not by the presence of specific parasite components but rather by absence of specific host components on the vacuolar membrane.Grants from the Deutsche Forschungsgemeinschaft: SFB635, 670, 680, SPP1399

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Health facility assessment of small and sick newborn care in low- and middle-income countries: systematic tool development and operationalisation with NEST360 and UNICEF.

    Get PDF
    BACKGROUND: Each year an estimated 2.3 million newborns die in the first 28 days of life. Most of these deaths are preventable, and high-quality neonatal care is fundamental for surviving and thriving. Service readiness is used to assess the capacity of hospitals to provide care, but current health facility assessment (HFA) tools do not fully evaluate inpatient small and sick newborn care (SSNC). METHODS: Health systems ingredients for SSNC were identified from international guidelines, notably World Health Organization (WHO), and other standards for SSNC. Existing global and national service readiness tools were identified and mapped against this ingredients list. A novel HFA tool was co-designed according to a priori considerations determined by policymakers from four African governments, including that the HFA be completed in one day and assess readiness across the health system. The tool was reviewed by > 150 global experts, and refined and operationalised in 64 hospitals in Kenya, Malawi, Nigeria, and Tanzania between September 2019 and March 2021. RESULTS: Eight hundred and sixty-six key health systems ingredients for service readiness for inpatient SSNC were identified and mapped against four global and eight national tools measuring SSNC service readiness. Tools revealed major content gaps particularly for devices and consumables, care guidelines, and facility infrastructure, with a mean of 13.2% (n = 866, range 2.2-34.4%) of ingredients included. Two tools covered 32.7% and 34.4% (n = 866) of ingredients and were used as inputs for the new HFA tool, which included ten modules organised by adapted WHO health system building blocks, including: infrastructure, pharmacy and laboratory, medical devices and supplies, biomedical technician workshop, human resources, information systems, leadership and governance, family-centred care, and infection prevention and control. This HFA tool can be conducted at a hospital by seven assessors in one day and has been used in 64 hospitals in Kenya, Malawi, Nigeria, and Tanzania. CONCLUSION: This HFA tool is available open-access to adapt for use to comprehensively measure service readiness for level-2 SSNC, including respiratory support. The resulting facility-level data enable comparable tracking for Every Newborn Action Plan coverage target four within and between countries, identifying facility and national-level health systems gaps for action

    Neonatal inpatient dataset for small and sick newborn care in low- and middle-income countries: systematic development and multi-country operationalisation with NEST360.

    Get PDF
    BACKGROUND: Every Newborn Action Plan (ENAP) coverage target 4 necessitates national scale-up of Level-2 Small and Sick Newborn Care (SSNC) (with Continuous Positive Airway Pressure (CPAP)) in 80% of districts by 2025. Routine neonatal inpatient data is important for improving quality of care, targeting equity gaps, and enabling data-driven decision-making at individual, district, and national-levels. Existing neonatal inpatient datasets vary in purpose, size, definitions, and collection processes. We describe the co-design and operationalisation of a core inpatient dataset for use to track outcomes and improve quality of care for small and sick newborns in high-mortality settings. METHODS: A three-step systematic framework was used to review, co-design, and operationalise this novel neonatal inpatient dataset in four countries (Malawi, Kenya, Tanzania, and Nigeria) implementing with the Newborn Essential Solutions and Technologies (NEST360) Alliance. Existing global and national datasets were identified, and variables were mapped according to categories. A priori considerations for variable inclusion were determined by clinicians and policymakers from the four African governments by facilitated group discussions. These included prioritising clinical care and newborn outcomes data, a parsimonious variable list, and electronic data entry. The tool was designed and refined by > 40 implementers and policymakers during a multi-stakeholder workshop and online interactions. RESULTS: Identified national and international datasets (n = 6) contained a median of 89 (IQR:61-154) variables, with many relating to research-specific initiatives. Maternal antenatal/intrapartum history was the largest variable category (21, 23.3%). The Neonatal Inpatient Dataset (NID) includes 60 core variables organised in six categories: (1) birth details/maternal history; (2) admission details/identifiers; (3) clinical complications/observations; (4) interventions/investigations; (5) discharge outcomes; and (6) diagnosis/cause-of-death. Categories were informed through the mapping process. The NID has been implemented at 69 neonatal units in four African countries and links to a facility-level quality improvement (QI) dashboard used in real-time by facility staff. CONCLUSION: The NEST360 NID is a novel, parsimonious tool for use in routine information systems to inform inpatient SSNC quality. Available on the NEST360/United Nations Children's Fund (UNICEF) Implementation Toolkit for SSNC, this adaptable tool enables facility and country-level comparisons to accelerate progress toward ENAP targets. Additional linked modules could include neonatal at-risk follow-up, retinopathy of prematurity, and Level-3 intensive care
    corecore