952 research outputs found

    Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope using Hubble Space Telescope Flux Standards

    Get PDF
    The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.Comment: 16 pages, 6 figure

    Faint NUV/FUV Standards from Swift/UVOT, GALEX and SDSS Photometry

    Full text link
    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of eleven new faint (u sim17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the Near Infrared to the Far Ultraviolet. These stars were chosen because they are known to be hot (20,000 < T_eff < 50,000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraint on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all eleven passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.Comment: Accepted for publication in Astrophysical Journal. 31 pages, 13 figures, electronic tables available from ApJ or on reques

    Evidence for the Large-Scale Dissociation of Molecular Gas in the Inner Spiral Arms of M81

    Get PDF
    We compare the detailed distributions of HI, H alpha, and 150 nm far-UV continuum emission in the spiral arms of M81 at a resolution of 9" (linear resolution 150 pc at 3.7 Mpc distance). The bright H alpha emission peaks are always associated with peaks in the far-UV emission. The converse is not always true; there are many regions of far-UV emission with little corresponding H alpha. The HI and the far-UV are always closely associated, in the sense that the HI is often brightest around the edges of the far-UV emission. The effects of extinction on the morphology are small, even in the far-UV. Extensive far-UV emission, often with little corresponding H alpha, indicates the presence of many ``B-stars'', which produce mostly non-ionizing UV photons. These far-UV photons dissociate a small fraction of an extensive layer of H_2 into HI. The observed morphology can be understood if ``chimneys'' are common in the spiral arms of M81, where holes are blown out of the galactic disk, exposing the bright HII regions and the corresponding far-UV associated with vigorous star formation. These ``naked'' star-forming regions show little obscuration. H_2 is turned into HI by UV photons impinging on the interior surfaces of these chimneys. The intensity of the far-UV radiation measured by UIT can dissociate the underlying H_2 with a typical density of ~10 H nucleii cm**-3 to produce the observed amount of HI in the spiral arms of M81. Except for thin surface layers locally heated in these photo-dissociation regions close to the far-UV sources, the bulk of the molecular gas in the inner disk of M81 is apparently too cold to produce much 12CO(1-0) emission.Comment: 12 pages, Latex. 8 postscript files. Better quality versions of the figures available from ftp://star.herts.ac.uk/pub/Knapen/m81uv . Accepted, Ap

    Do Lognormal Column-Density Distributions in Molecular Clouds Imply Supersonic Turbulence?

    Full text link
    Recent observations of column densities in molecular clouds find lognormal distributions with power-law high-density tails. These results are often interpreted as indications that supersonic turbulence dominates the dynamics of the observed clouds. We calculate and present the column-density distributions of three clouds, modeled with very different techniques, none of which is dominated by supersonic turbulence. The first star-forming cloud is simulated using smoothed particle hydrodynamics (SPH); in this case gravity, opposed only by thermal-pressure forces, drives the evolution. The second cloud is magnetically subcritical with subsonic turbulence, simulated using nonideal MHD; in this case the evolution is due to gravitationally-driven ambipolar diffusion. The third cloud is isothermal, self-gravitating, and has a smooth density distribution analytically approximated with a uniform inner region and an r^-2 profile at larger radii. We show that in all three cases the column-density distributions are lognormal. Power-law tails develop only at late times (or, in the case of the smooth analytic profile, for strongly centrally concentrated configurations), when gravity dominates all opposing forces. It therefore follows that lognormal column-density distributions are generic features of diverse model clouds, and should not be interpreted as being a consequence of supersonic turbulence.Comment: 6 pages, 6 figures, accepted for publication in MNRA

    Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.

    Get PDF
    INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study

    Gaia broad band photometry

    Full text link
    The scientific community needs to be prepared to analyse the data from Gaia, one of the most ambitious ESA space missions, to be launched in 2012. The purpose of this paper is to provide data and tools in order to predict in advance how Gaia photometry is expected to be. To do so, we provide relationships among colours involving Gaia magnitudes and colours from other commonly used photometric systems (Johnson-Cousins, SDSS, Hipparcos and Tycho). The most up-to-date information from industrial partners has been used to define the nominal passbands and based on the BaSeL3.1 stellar spectral energy distribution library, relationships were obtained for stars with different reddening values, ranges of temperatures, surface gravities and metallicities. The transformations involving Gaia and Johnson-Cousins V-I_C and Sloan DSS g-z colours have the lowest residuals. A polynomial expression for the relation between the effective temperature and the colour G_BP-G_RP was derived for stars with T > 4500 K. Transformations involving two Johnson or two Sloan DSS colours yield lower residuals than using only one colour. We also computed several ratios of total-to-selective absorption including absorption A_G in the G band and colour excess E(G_BP-G_RP) for our sample stars. A relationship, involving A_G/A_V and the intrinsic (V-I_C) colour, is provided. The derived Gaia passbands have been used to compute tracks and isochrones using the Padova and BASTI models. Finally, the performances of the predicted Gaia magnitudes have been estimated according to the magnitude and the celestial coordinates of the star. The provided dependencies among colours can be used for planning scientific exploitation of Gaia data, performing simulations of the Gaia-like sky, planning ground-based complementary observations and for building catalogues with auxiliary data for the Gaia data processing and validation.Comment: 15 pages and 19 figure (accepted in A&A

    A New Probe of the Molecular Gas in Galaxies: Application to M101

    Get PDF
    Recent studies of nearby spiral galaxies suggest that photodissociation regions (PDRs) are capable of producing much of the observed HI in galaxy disks. In that case, measurements of the HI column density and the far-ultraviolet (FUV) photon flux provide a new probe of the volume density of the local underlying H_2. We develop the method and apply it to the giant Scd spiral M101 (NGC 5457). We find that, after correction for the best-estimate gradient of metallicity in the ISM of M101 and for the extinction of the ultraviolet emission, molecular gas with a narrow range of density from 30-1000 cm^-3 is found near star- forming regions at all radii in the disk of M101 out to a distance of 12' (approximately 26 kpc), close to the photometric limit of R_25 = 13.5'. In this picture, the ISM is virtually all molecular in the inner parts of M101. The strong decrease of the HI column density in the inner disk of the galaxy at R_G < 10 kpc is a consequence of a strong increase in the dust-to-gas ratio there, resulting in an increase of the H_2 formation rate on grains and a corresponding disappearance of hydrogen in its atomic form.Comment: accepted for publication in The Astrophysical Journal (1 August 2000); 29 pages including 20 figures (7 gif); AAS LaTex; contact authors for full resolution versions of gif figure

    UIT Detection of Hot Stars in the Globular Cluster NGC362

    Get PDF
    We used the Ultraviolet Imaging Telescope during the March 1995 Astro-2 mission to obtain a deep far-UV image of the globular cluster NGC 362, which was formerly thought to have an almost entirely red horizontal branch (HB). 84 hot (T_eff > 8500 K) stars were detected within a radius of 8'.25 of the cluster center. Of these, 43 have FUV magnitudes consistent with HB stars in NGC 362, and at least 34 are cluster members. The number of cluster members is made uncertain by background contamination from blue stars in the Small Magellanic Cloud (SMC). There are six candidate supra-HB stars which have probably evolved from the HB. We discuss the implications of these results for the production of hot blue stars in stellar populations.Comment: 10 pages AASLaTeX including one postscript figure and one compressed bitmap, .jpg format. To appear in Ap. J. Letters. Postscript version also available at http://www.astro.virginia.edu/~bd4r
    • …
    corecore