25 research outputs found

    Fracture dolomite as an archive of continental palaeo-environmental conditions

    Get PDF
    The origin of Quaternary dolomites in continental environments (e.g. karst and lakes) is barely constrained compared to marine dolomites in sedimentary records. Here we present a study of dolomite and aragonite formations infilling young fractures of the ‘Erzberg’ iron ore deposit, Austria, under continental-meteoric and low temperature conditions. Two dolomite generations formed shortly after the Last Glacial Maximum (~20 kyr BP): dolomite spheroids and matrix dolomite. Clumped isotope measurements and U/Th disequilibrium ages reveal formation temperatures of 0–3 °C (±6 °C) and 3–20 °C (±5 °C) for the both dolomite types, and depositional ages around 19.21 ± 0.10 kyr BP and 13.97 ± 0.08 kyr BP or younger, respectively. Meteoric solution and carbonate isotope compositions (δ18O, δ13C and 87Sr/86Sr) indicate the dolomites formed via aragonite and high-Mg calcite precursors from CO2-degassed, Mg-rich solutions. Our study introduces low temperature dolomite formations and their application as a sedimentary-chemical archive.ISSN:2662-443

    The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems

    Get PDF
    Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide “out-of-sample” evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (δ 18O, δ 13C) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data. The compiled data are available at https://doi.org/10.17864/1947.147

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices

    The origin of lamination in stalagmites from Katerloch Cave, Austria: Towards a seasonality proxy

    No full text

    Origin and palaeoenvironmental significance of lamination in stalagmites from Katerloch Cave, Austria

    No full text
    The origin and environmental dependencies of lamination in stalagmites from Katerloch, common in speleothems from other cave sites, are examined in detail. Petrographic observations and chemical analyses (including isotopes) of stalagmites and modern calcite were combined with multi-annual cave monitoring. All investigated stalagmites are composed of low-Mg calcite and show white, porous laminae and typically thinner, translucent dense laminae. The binary lamination pattern results from changes in the calcite fabric: white, porous laminae are characterized by a high porosity and abundant fluid inclusions and also by enhanced vertical growth and thinning towards the flanks. Translucent, dense laminae exhibit a compact fabric and constant thickness of individual growth layers. U-Th dating supports an annual origin of the lamination and the seasonally changing intensity of cave ventilation provides a robust explanation for the observed relationships between lamination, stable C isotopic compositions and trace elements (Mg, Sr and Ba). The seasonally variable air exchange, driven by temperature contrasts between the cave interior and outside atmosphere, modulates the rate and amount of CO₂ degassing from the drip water and affects the hydrochemistry and consequently the fabric of the precipitating calcite. Although cave air composition and drip rate are both major variables in controlling CO₂ degassing from the drip water, the seasonally changing ventilation in Katerloch exerts the primary control and the results suggest a secondary (amplifying/attenuating) influence of the drip rate. Drip rate, however, might be the controlling parameter for lamina development at cave sites experiencing only small seasonal cave air exchange. Importantly, the seasonally variable composition of drip water does not reflect the seasonal cycle of processes in the soil zone, but results from exchange with the cave atmosphere. The alternating porous and dense calcite fabric is the expression of a variable degree of lateral coalescence of smaller crystallites forming large columnar crystals. The white, porous laminae represent partial coalescence and form during the warm season: low calcite δ<sup>13</sup>C values are linked to low δ<sup>13</sup>C values of cave air and drip water during that time. This observation corresponds to times of reduced cave ventilation, high pCO₂ of cave air, low drip water pH, lower calcite supersaturation and typically high drip rates. In contrast, the translucent, dense laminae represent more or less complete lateral coalescence (inclusion-free) during the cold season (high calcite, drip water and cave air δ<sup>13</sup>C values), i.e. times of enhanced cave ventilation, low cave air pCO₂, increased drip water pH, relatively high calcite supersaturation and typically low drip rates. In essence, the relative development of the two lamina types reflects changes in the seasonality of external air temperature and precipitation, with a strong control of the winter air temperature on the intensity of cave-air exchange. Thick translucent, dense laminae are favoured by long, cold and wet winters and such conditions may be related closely to the North Atlantic Oscillation mode (weak westerlies) and enhanced Mediterranean cyclone activity during the cold season. Studies of speleothem lamination can thus help to better understand (and quantify) the role of seasonality changes, for example, during rapid climate events

    North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems

    Get PDF
    The European Alps are an effective barrier for meridional moisture transport and are thus uniquely placed to record shifts in the North Atlantic storm track pattern associated with the waxing and waning of Late-Pleistocene Northern Hemisphere ice sheets. The lack of well-dated terrestrial proxy records spanning this time period, however, renders the reconstruction of past atmospheric patterns difficult. Here we present a precisely dated, continuous terrestrial record of meteoric precipitation in Europe between 30 and 14.7 ka. In contrast to present-day conditions, our speleothem data provide strong evidence for preferential advection of moisture from the South across the Alps supporting a southward shift of the storm track during the local Last Glacial Maximum (that is, 26.5–23.5 ka). Moreover, our age control indicates that this circulation pattern preceded the Northern Hemisphere precession maximum by ~3 ka, suggesting that obliquity may have played a considerable role in the Alpine ice aggradation

    Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps

    Get PDF
    AbstractUnderstanding the sequence of events that take place during glacial-interglacial climate transitions is important for improving our knowledge of abrupt climate change. Here, we present a new stacked, high-resolution, precisely-dated speleothem stable isotope record from the northern Alps, which provides an important record of temperature and moisture-source changes between 134 and 111 ka for Europe and the wider North Atlantic realm. The record encompasses the penultimate deglaciation (Termination II (TII)), which lies beyond the limit of radiocarbon dating, thus providing an important new archive for a crucial period of rapid paleoclimate change. Warmer and wetter ice-free conditions were achieved by 134.1 ± 0.7 ka (modelled ages) as indicated by the presence of liquid water at the site. Temperatures warmed further at 133.7 ± 0.5 ka and led into an interstadial, synchronous with slightly elevated monsoon strength during the week monsoon interval. The interstadial experienced an unstable climate with a trough in temperature associated with a slowdown in Atlantic Meridional Overturning Circulation (AMOC) and a reduction in North Atlantic Deep Water (NADW) formation. The interstadial ended with a more extreme cold reversal lasting 500 years in which NADW formation remained active but the subpolar gyre weakened allowing cool polar waters to penetrate southwards. The main warming associated with TII was very rapid, taking place between 130.9 ± 0.9 and 130.7 ± 0.9 ka coeval with initial monsoon strengthening. Temperatures then plateaued before being interrupted by a 600-year cold event at 129.1 ± 0.6 ka, associated once again with penetration of polar waters southwards into the North Atlantic and a slowdown in monsoon strengthening. Sub-orbital climate oscillations were thus a feature of TII in the north Atlantic realm, which broadly resemble the Bølling/Allerød-Younger Dryas-8.2 ka event pattern of change observed in Termination I despite monsoon records indicating strong differences between the last and penultimate deglaciation
    corecore