186 research outputs found

    Optical Detection of Lightning from Space

    Get PDF
    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed

    The electrification of stratiform anvils

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1997.Includes bibliographical references (p. 225-234).by Dennis J. Boccippio.Ph.D

    Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor

    Get PDF
    We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms

    Lightning Charge Retrievals: Dimensional Reduction, LDAR Constraints, and a First Comparison w/ LIS Satellite Data

    Get PDF
    A "dimensional reduction" (DR) method is introduced for analyzing lightning field changes whereby the number of unknowns in a discrete two-charge model is reduced from the standard eight to just four. The four unknowns are found by performing a numerical minimization of a chi-squared goodness-of-fit function. At each step of the minimization, an Overdetermined Fixed Matrix (OFM) method is used to immediately retrieve the best "residual source". In this way, all 8 parameters are found, yet a numerical search of only 4 parameters is required. The inversion method is applied to the understanding of lightning charge retrievals. The accuracy of the DR method has been assessed by comparing retrievals with data provided by the Lightning Detection And Ranging (LDAR) instrument. Because lightning effectively deposits charge within thundercloud charge centers and because LDAR traces the geometrical development of the lightning channel with high precision, the LDAR data provides an ideal constraint for finding the best model charge solutions. In particular, LDAR data can be used to help determine both the horizontal and vertical positions of the model charges, thereby eliminating dipole ambiguities. The results of the LDAR-constrained charge retrieval method have been compared to the locations of optical pulses/flash locations detected by the Lightning Imaging Sensor (LIS)

    Observations of the relationship between sprite morphology and in-cloud lightning processes

    Get PDF
    [1] During a thunderstorm on 23 July 2003, 15 sprites were captured by a LLTV camera mounted at the observatory on Pic du Midi in the French PyrĂ©nĂ©es. Simultaneous observations of cloud-to-ground (CG) and intracloud (IC) lightning activity from two independent lightning detection systems and a broadband ELF/VLF receiver allow a detailed study of the relationship between electrical activity in a thunderstorm and the sprites generated in the mesosphere above. Results suggest that positive CG and IC lightning differ for the two types of sprites most frequently observed, the carrot- and column-shaped sprites. Column sprites occur after a short delay (<30 ms) from the causative +CG and are associated with little VHF activity, suggesting no direct IC action on the charge transfer process. On the other hand, carrot sprites are delayed up to about 200 ms relative to their causative +CG stroke and are accompanied by a burst of VHF activity starting 25–75 ms before the CG stroke. While column sprites associate with short-lasting (less than 30 ms) ELF/VLF sferics, carrot sprites associate with bursts of sferics initiating at the time of the causative +CG discharge and persisting for 50 to 250 ms, indicating extensive in-cloud activity. One carrot event was found to be preceded by vigorous IC activity and a strong, long-lived cluster of ELF/VLF sferics but lacking a +CG. The observations of ELF/VLF sferic clusters associated with lightning and sprites form the basis for a discussion of the reliability of lightning detection systems based on VHF interferometry.Peer ReviewedPostprint (published version

    Analysis of the first gigantic jet recorded over continental North America

    Get PDF
    [1] Two low-light cameras near Marfa, Texas, recorded a gigantic jet over northern Mexico on 13 May 2005 at approximately 0423:50 UTC. Assuming that the farthest of two candidate storm systems was its source, the bright lower channel ended in a fork at around 50–59 km height with the very dim upper branches extended to 69–80 km altitude. During the time window containing the jet, extremely low frequency magnetic field recordings show that there was no fast charge moment change larger than 50 coulomb times kilometers (C km) but there was a larger and slower charge moment change of 520 C km over 70 ms. The likely parent thunderstorm was a high-precipitation supercell cluster containing a persistent mesocyclone, with radar echo tops of at least 17 km. However, photogrammetric analysis suggests that the gigantic jet occurred over the forward flank downdraft region with echo tops of 14 km. This part of the supercell may have had an inverted-polarity charge configuration as evidenced by positive cloud-to-ground lightning flashes (+CG) dominating over negative flashes (-CG), while -CGs occurred under the downwind anvil. Four minutes before the gigantic jet, -CG activity practically ceased in this area, while +CG rates increased, culminating during the 20 s leading up to the gigantic jet with four National Lightning Detection Network–detected +CGs. A relative lull in lightning activity of both polarities was observed for up to 1.5 min after the gigantic jet. The maturing storm subsequently produced 30 sprites between 0454 and 0820 UTC, some associated with extremely large impulse charge moment change values.Peer ReviewedPostprint (published version

    The mesospheric inversion layer and sprites

    Full text link
    The vertical structure of temperature observed by SABER (Sounding of Atmosphere using Broadband Emission Radiometry) aboard TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) and sprites observations made during the Eurosprite 2003 to 2007 observational campaign were analyzed. Sprite observations were made at two locations in France, namely Puy de Dome in the French Massif Central and at the Pic du Midi in the French Pyrenees. It is observed that the vertical structure of temperature shows evidence for a Mesospheric Inversion Layer (MIL) on those days on which sprites were observed. A few events are also reported in which sprites were not recorded, although there is evidence of a MIL in the vertical structure of the temperature. It is proposed that breaking gravity waves produced by convective thunderstorms facilitate the production of (a) sprites by modulating the neutral air-density and (b) MILs via the deposition of energy. The same proposition has been used to explain observations of lightings as well as both MILs and lightning arising out of deep convections.Comment: 34 pages, 5figures. Accepted in Journal of Geophysical Research, US

    Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics,

    Get PDF
    ABSTRACT During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of &quot;weakest/smallest&quot; features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) min ÏȘ1 . The greatest observed flash rate is 1351 fl min ÏȘ1 ; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 km 2 , and the greatest rainfall from an individual precipitation feature exceeds 2 Ï« 10 12 kg h ÏȘ1 of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations, seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land-ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land

    Nitrogen Oxides and Ozones from B-747 Measurements (NOXAR) during POLINAT 2 and SONEX: Overview and Case-Studies on Continental and Marine Convection

    Get PDF
    In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 98 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO, concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x), enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case-studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, with lightning observations from the U.S. National Lightning Detection Network (NLDN) or with the Optical Transient Detector (OTD) satellite. For frontal activity above the continental U.S., we demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. For another case we show that the number of lightning flashes in a cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows and suggest that lightning was the dominant source. From the fact that in autumn the NO, maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are an important source for the regional upper tropospheric NO(x) budget in autumn

    Diurnal patterns in lightning activity over South America

    Get PDF
    Ponencia presentada en 2nd TEA–IS Summer School, June 23rd – June 27nd 2014, Collioure, France.Satellite and ground network observations of lightning flash distribution data are used to examine the diurnal cycle of lightning activity over the tropical and subtropical regions of South America. The results show in the subtropical South America, particularly the area limited by [-25°; -40°] of latitude and [-70°; -50°] of longitude, the time of maximum lightning activity was shifted to nocturnal hours, extending from close to midnight to early morning hours. This behavior can be associated to the peak in MCSs in the morning hours in the region. A close connection between peak time of lightning activity and peak time of precipitation events have been observed by comparing the current results with other published studies. On the other hand, storms over northern Argentina are known as leading Transient Luminous Events (TLE) generators on Earth (Thomas et al., 2007).Fil: Nicora, M. Gabriela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones CientĂ­ficas y TĂ©cnicas para la Defensa. Departamento de Investigaciones en LĂĄseres y sus aplicaciones; Argentina.Fil: Nicora, M. Gabriela. Ministerio de Defensa. Instituto de Investigaciones CientĂ­ficas y TĂ©cnicas para la Defensa. Departamento de Investigaciones en LĂĄseres y sus aplicaciones; Argentina.Fil: Castellano, Nesvit. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de FĂ­sica Enrique Gaviola; Argentina.Fil: Castellano, Nesvit. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; Argentina.Fil: Ávila, Eldo E. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de FĂ­sica Enrique Gaviola; Argentina.Fil: Ávila, Eldo E. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; Argentina.Fil: BĂŒrgesser, Rodrigo E. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de FĂ­sica Enrique Gaviola; Argentina.Fil: BĂŒrgesser, Rodrigo E. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; Argentina.MeteorologĂ­a y Ciencias AtmosfĂ©rica
    • 

    corecore