40 research outputs found

    Harvard Personal Genome Project: lessons from participatory public research

    Get PDF
    Background: Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an ‘open consent’ framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. Discussion Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. Summary We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants

    Open Humans:A platform for participant-centered research and personal data exploration

    Get PDF
    Background Many aspects of our lives are now digitized and connected to the internet. As a result, individuals are now creating and collecting more personal data than ever before. This offers an unprecedented chance for human-participant research ranging from the social sciences to precision medicine. With this potential wealth of data comes practical problems (e.g., how to merge data streams from various sources), as well as ethical problems (e.g., how best to balance risks and benefits when enabling personal data sharing by individuals). Results To begin to address these problems in real time, we present Open Humans, a community-based platform that enables personal data collections across data streams, giving individuals more personal data access and control of sharing authorizations, and enabling academic research as well as patient-led projects. We showcase data streams that Open Humans combines (e.g., personal genetic data, wearable activity monitors, GPS location records, and continuous glucose monitor data), along with use cases of how the data facilitate various projects. Conclusions Open Humans highlights how a community-centric ecosystem can be used to aggregate personal data from various sources, as well as how these data can be used by academic and citizen scientists through practical, iterative approaches to sharing that strive to balance considerations with participant autonomy, inclusion, and privacy.publishedVersio

    Members of the public in the USA, UK, Canada and Australia expressing genetic exceptionalism say they are more willing to donate genomic data

    Get PDF
    Funder: State Government of Victoria (Victorian Government); doi: https://doi.org/10.13039/501100004752Funder: Victorian State GovernmentAbstract: Public acceptance is critical for sharing of genomic data at scale. This paper examines how acceptance of data sharing pertains to the perceived similarities and differences between DNA and other forms of personal data. It explores the perceptions of representative publics from the USA, Canada, the UK and Australia (n = 8967) towards the donation of DNA and health data. Fifty-two percent of this public held ‘exceptionalist’ views about genetics (i.e., believed DNA is different or ‘special’ compared to other types of medical information). This group was more likely to be familiar with or have had personal experience with genomics and to perceive DNA information as having personal as well as clinical and scientific value. Those with personal experience with genetics and genetic exceptionalist views were nearly six times more likely to be willing to donate their anonymous DNA and medical information for research than other respondents. Perceived harms from re-identification did not appear to dissuade publics from being willing to participate in research. The interplay between exceptionalist views about genetics and the personal, scientific and clinical value attributed to data would be a valuable focus for future research

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Recent Progress in Lyme Disease and Remaining Challenges.

    No full text

    FishmiRNA: An evolutionarily supported microRNA annotation and expression database for ray-finned fishes

    No full text
    International audiencemicroRNAs are important post-transcriptional regulators of gene expression involved in countless biological processes and are widely studied across metazoans. While miRNA research continues to grow, the large community of fish miRNA researchers lacks exhaustive resources consistent among species. To fill this gap, we developed FishmiRNA, an evolutionarily supported microRNA annotation and expression database for ray-finned fishes: www.fishmirna.org. The self-explanatory database contains detailed, manually-curated miRNA annotations with orthology relationships rigorously established by sequence similarity and conserved syntenies, and expression data provided for each detected mature miRNA. In just few clicks, users can download the annotation and expression database in several convenient formats either in its entirety or a subset. Simple filters and BLAST search options also permit the simultaneous exploration and visual comparison of expression data for up to any ten mature miRNAs across species and organs. FishmiRNA was specifically designed for ease of use to reach a wide audience
    corecore