74 research outputs found

    Identification of Direct Target Engagement Biomarkers for Kinase-Targeted Therapeutics

    Get PDF
    Pharmacodynamic (PD) biomarkers are an increasingly valuable tool for decision-making and prioritization of lead compounds during preclinical and clinical studies as they link drug-target inhibition in cells with biological activity. They are of particular importance for novel, first-in-class mechanisms, where the ability of a targeted therapeutic to impact disease outcome is often unknown. By definition, proximal PD biomarkers aim to measure the interaction of a drug with its biological target. For kinase drug discovery, protein substrate phosphorylation sites represent candidate PD biomarkers. However, substrate phosphorylation is often controlled by input from multiple converging pathways complicating assessment of how potently a small molecule drug hits its target based on substrate phoshorylation measurements alone. Here, we report the use of quantitative, differential mass-spectrometry to identify and monitor novel drug-regulated phosphorylation sites on target kinases. Autophosphorylation sites constitute clinically validated biomarkers for select protein tyrosine kinase inhibitors. The present study extends this principle to phosphorylation sites in serine/threonine kinases looking beyond the T-loop autophosphorylation site. Specifically, for the 3′-phosphoinositide-dependent protein kinase 1 (PDK1), two phospho-residues p-PDK1Ser410 and p-PDK1Thr513 are modulated by small-molecule PDK1 inhibitors, and their degree of dephosphorylation correlates with inhibitor potency. We note that classical, ATP-competitive PDK1 inhibitors do not modulate PDK1 T-loop phosphorylation (p-PDK1Ser241), highlighting the value of an unbiased approach to identify drug target-regulated phosphorylation sites as these are complementary to pathway PD biomarkers. Finally, we extend our analysis to another protein Ser/Thr kinase, highlighting a broader utility of our approach for identification of kinase drug-target engagement biomarkers

    Dancing with death. A historical perspective on coping with covid-19

    Get PDF
    In this paper, we address the question on how societies coped with pandemic crises, how they tried to control or adapt to the disease, or even managed to overcome the death trap in history. On the basis of historical research, we describe how societies in the western world accommodated to or exited hardship and restrictive measures over the course of the last four centuries. In particular, we are interested in how historically embedded citizens' resources were directed towards living with and to a certain extent accepting the virus. Such an approach of “applied history” to the management of crises and public hazards, we believe, helps address today's pressing question of what adaptive strategies can be adopted to return to a normalized life, including living with socially acceptable medical, hygienic and other pandemic‐related measures

    Autoantibody Production in Cancer—The Humoral Immune Response toward Autologous Antigens in Cancer Patients

    Get PDF
    A link between autoimmune responses and cancer via autoantibodies was first described in the 1950s. Since, autoantibodies have been studied for their potential use as cancer biomarkers, however the exact causes of their production remain to be elucidated. This review summarizes current theories of the causes of autoantibody production in cancer, namely: 1) defects in tolerance and inflammation, 2) changes in protein expression levels, 3) altered protein structure, and 4) cellular death mechanisms. We also highlight the need for further research into this field to improve our understanding of autoantibodies as biomarkers for cancer development and progression

    Modeling of miRNA and Drug Action in the EGFR Signaling Pathway

    Get PDF
    MicroRNAs have gained significant interest due to their widespread occurrence and diverse functions as regulatory molecules, which are essential for cell division, growth, development and apoptosis in eukaryotes. The epidermal growth factor receptor (EGFR) signaling pathway is one of the best investigated cellular signaling pathways regulating important cellular processes and its deregulation is associated with severe diseases, such as cancer. In this study, we introduce a systems biological model of the EGFR signaling pathway integrating validated miRNA-target information according to diverse studies, in order to demonstrate essential roles of miRNA within this pathway. The model consists of 1241 reactions and contains 241 miRNAs. We analyze the impact of 100 specific miRNA inhibitors (anit-miRNAs) on this pathway and propose that the embedded miRNA-network can help to identify new drug targets of the EGFR signaling pathway and thereby support the development of new therapeutic strategies against cancer

    Measurement of inclusive π0\pi^{0} production in hadronic Z0Z^{0} decays

    Get PDF
    An analysis is presented of inclusive \pi^0 production in Z^0 decays measured with the DELPHI detector. At low energies, \pi^0 decays are reconstructed by \linebreak using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to x_p = 2 \cdot p_{\pi}/\sqrt{s} = 0.75) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for {q\overline q} and {b \bar b} events. The number of \pi^0's per hadronic Z^0 event is N(\pi^0)/ Z_{had}^0 = 9.2 \pm 0.2 \mbox{(stat)} \pm 1.0 \mbox{(syst)} and for {b \bar b}~events the number of \pi^0's is {\mathrm N(\pi^0)/ b \overline b} = 10.1 \pm 0.4 \mbox{(stat)} \pm 1.1 \mbox{(syst)} . The ratio of the number of \pi^0's in b \overline b events to hadronic Z^0 events is less affected by the systematic errors and is found to be 1.09 \pm 0.05 \pm 0.01. The measured \pi^0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the \mathrm \xi_p = \ln(1/x_p) distribution is \xi_p^{\star} = 3.90^{+0.24}_{-0.14}. The average number of \pi^0's from the decay of primary \mathrm B hadrons is found to be {\mathrm N} (B \rightarrow \pi^0 \, X)/\mbox{B hadron} = 2.78 \pm 0.15 \mbox{(stat)} \pm 0.60 \mbox{(syst)}

    First Measurement of the Strange Quark Asymmetry at the Z0Z^{0} Peak

    Get PDF

    Search for Neutral Heavy Leptons Produced in Z Decays

    Get PDF
    Weak isosinglet Neutral Heavy Leptons (νm\nu_m) have been searched for using data collected by the DELPHI detector corresponding to 3.3×1063.3\times 10^{6} hadronic~Z0^{0} decays at LEP1. Four separate searches have been performed, for short-lived νm\nu_m production giving monojet or acollinear jet topologies, and for long-lived νm\nu_m giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(BR(Z0νmν)^0\rightarrow \nu_m \overline{\nu}) of about 1.3×1061.3\times10^{-6} at 95\% confidence level for νm\nu_m masses between 3.5 and 50 GeV/c2c^2. Outside this range the limit weakens rapidly with the νm\nu_m mass. %Special emphasis has been given to the search for monojet--like topologies. One event %has passed the selection, in agreement with the expectation from the reaction: %e+eˉννˉe^+e^- \rightarrow\ell \bar\ell \nu\bar\nu. The results are also interpreted in terms of limits for the single production of excited neutrinos

    Search for new phenomena using single photon events in the DELPHI detector at LEP

    Get PDF
    Data are presented on the reaction \epem~\into~\gamma + no other detected particle at center-of-mass energies, \sqs = 89.48 GeV, 91.26 GeV and 93.08 GeV. The cross section for this reaction is related directly to the number of light neutrino generations which couple to the \zz boson, and to several other phenomena such as excited neutrinos, the production of an invisible `X' particle, a possible magnetic moment of the tau neutrino, and neutral monojets. Based on the observed number of single photon events, the number of light neutrinos which couple to the \zz is measured to be N_\nu = 3.15 \pm 0.34. No evidence is found for anomalous production of energetic single photons, and upper limits at the 95\% confidence level are determined for excited neutrino production (BR < 4-9 \times 10^{-6}), production of an invisible `X' particle (\sigma < 0.1 pb), and the magnetic moment of the tau neutrino (< 5.2 \times 10^{-6} \mu_B). No event with the topology of a neutral monojet is found, and this corresponds to the limit \sigma < 0.044/\epsilon pb at the 95\% confidence level, where \epsilon is the unknown overall monojet detection efficiency

    Measurement of the Bd0^{0}_{d} oscillation frequency using kaons, leptons and jet charge

    Get PDF
    A measurement of the mass difference, \Delta m_d, between the two physical \mbox{B}^0_d states has been obtained from the analysis of the impact parameter distribution of a lepton emitted at large transverse momentum (p_t) relative to the jet axis and from the analysis of the flight distance distribution of secondary vertices tagged by either a high p_t lepton or an identified kaon. In the opposite hemisphere of the event, the charge of the initial quark has been evaluated using a high p_t lepton, a charged kaon or the mean jet charge. With 1.7 million hadronic Z^0 decays recorded by DELPHI between 1991 and 1993, \Delta m_d is found to be: \Delta m_d = 0.531^{+0.050}_{-0.046} ~(stat.) \pm 0.078 ~(syst.) ~ {\mathrm{ps}}^{-1} \,
    corecore