340 research outputs found

    Investing in the health of girls and women: a best buy for sustainable development.

    Get PDF
    Human rights, theory, evidence, and common sense all suggest that greater investment in women’s health could be among the “best buys” for broader economic development and societal wellbeing

    Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid

    Get PDF
    Alzheimer's Disease (AD) is defined histopathologically by extracellular β-amyloid (Aβ) fibrils plus intraneuronal tau filaments. Studies of transgenic mice and cultured cells indicate that AD is caused by a pathological cascade in which Aβ lies upstream of tau, but the steps that connect Aβ to tau have remained undefined. We demonstrate that tau confers acute hypersensitivity of microtubules to prefibrillar, extracellular Aβ in nonneuronal cells that express transfected tau and in cultured neurons that express endogenous tau. Prefibrillar Aβ42 was active at submicromolar concentrations, several-fold below those required for equivalent effects of prefibrillar Aβ40, and microtubules were insensitive to fibrillar Aβ. The active region of tau was localized to an N-terminal domain that does not bind microtubules and is not part of the region of tau that assembles into filaments. These results suggest that a seminal cell biological event in AD pathogenesis is acute, tau-dependent loss of microtubule integrity caused by exposure of neurons to readily diffusible Aβ

    A global health action agenda for the Biden administration

    Get PDF
    Joe Biden will assume the US presidency at a time of unprecedented global health crises, with the COVID-19 pandemic and major setbacks in reducing poverty, hunger, and disease. The COVID-19 pandemic offers rare opportunities for the US President-elect to spearhead long-overdue structural changes and revitalise global health leadership. Building trust among global partners will be challenging, given the USA\u27s withdrawal from, and disruption of, international cooperation under the presidency of Donald Trump. The USA will have to lead in a different, more collaborative way. Here, we offer a Global Action Agenda for the Biden Administration

    Synchronisation of Policy Related Uncertainty, Financial Stress and Economic Activity in the USA

    Get PDF
    This study analyses the synchronisation of economic activity, financial stress and uncertainty in the USA by employing a wavelet-based approach of cohesion. Being innovative in the choice of the methodological framework as well as underlying factors of interest, we employed the monthly data on the policy-related uncertainty indexes, Chicago Fed National Activity Index (CFNAI) and Kansas City Federal Reserve Financial Stress Index (KCFSI). Our key empirical findings suggest that the co-movements of policy uncertainty, financial stress and economic activity are frequencies as well as time-dependent. The uncertainty indices are found to be synchronised at lower and intermediate frequencies for all of the pairs. In the nexus between uncertainty and economic activity, financial stress plays a crucial role. Co-movement of the policy uncertainty is observed to be more pronounced during the crisis periods though at different frequencies which indicated the usefulness of the proposed framework to analyse the implications of contemporaneous policy uncertainty and financial stress for the real economy. Concomitantly this informs the policy efforts to address the financial and economic instabilities which may arise as a consequence of financial stress and policy uncertainty

    Evolving strategies for enzyme engineering.

    Get PDF
    Directed evolution is a common technique to engineer enzymes for a diverse set of applications. Structural information and an understanding of how proteins respond to mutation and recombination are being used to develop improved directed evolution strategies by increasing the probability that mutant sequences have the desired properties. Strategies that target mutagenesis to particular regions of a protein or use recombination to introduce large sequence changes can complement full-gene random mutagenesis and pave the way to achieving ever more ambitious enzyme engineering goals. Introduction Enzymes are Nature's catalysts, tremendously accelerating the rates of a wide range of biochemical reactions, often with exquisite specificity. Harnessing enzymes for other purposes usually requires engineering them to improve their activity or stability. One approach to engineering enzymes is to make specific modifications, but this demands a detailed and frequently unattainable understanding of the relationship between sequence and function. Directed evolution bypasses this problem in much the same way as natural evolution, by combining mutation with selection or screening to identify improved variants. Because it is never possible to test more than an infinitesimal fraction of the vast number of possible protein sequences, it is essential to have a strategy for creating directed evolution sequence libraries that are rich in proteins with the desired enzymatic function. Such libraries can be designed by drawing on our knowledge of how proteins respond to mutation Directed evolution strategies Directed evolution works when the researcher can find at least one enzyme with improved properties in the sequence library. The most naïve strategy of creating a library of random protein sequences is not useful for most enzyme engineering goals. Although sequences with simple functions such as ATP binding Most directed evolution strategies involve making relatively small changes to existing enzymes. This takes advantage of the fact that enzymes often have a range of weak promiscuous activities that are quickly improved with just a few mutations Random mutagenesis The most straightforward strategy for library construction is to randomly mutate the full gene of an enzyme with a function close to the desired function. This approach requires no structural or mechanistic information, and can uncover unexpected beneficial mutations. Using sequential rounds of error-prone PCR to make an average of a few mutations per gene, followed by screening or selection for improved variants, is effective for a wide range of engineering goals. The creation of enantioselective catalysts from an enzyme whose structure is unknown is one such application. A single round of error-prone PCR produced several dozen cyclohexane monooxygenases with R or S selectivity Beneficial mutations found by random mutagenesis can be combined by DNA shuffling. A study with b-glucuronidase showed that beneficial mutations drive each other to extinction during recursive random mutagenesis, but that this problem can be eliminated by DNA shuffling Random mutagenesis can also uncover additional beneficial mutations in rationally designed enzymes. The Withers laboratory Targeted mutagenesis Some engineering goals, such as dramatically altering an enzyme's specificity or regioselectivity, may require mul- Random mutagenesis, targeted mutagenesis and recombination are three strategies for producing sequence libraries for directed evolution. (a) Random mutagenesis introduces amino acid substitutions throughout the protein and can uncover beneficial mutations distant from the active site. The red residues in the structure at top show four mutations uncovered by random mutagenesis that enhanced the activity of mammalian cytochrome P450 2B1 on several substrates Using a high-resolution crystal structure to target mutagenesis to three active site residues, Hill et al. [23] created a triple mutant of phosphotriesterase with a rate enhancement of three orders of magnitude for the degradation of organic triesters such as those used in chemical warfare agents. Crucially, two of the corresponding single mutants did not increase activity and so would not have been identified if they had been explored one at a time. The problem of inverting the enantioselectivity of a lipase offers an interesting comparison between full-gene random mutagenesis and targeted mutagenesis. Reetz and co-workers [24] used several rounds of full-gene random mutagenesis and DNA shuffling to invert the enantioselectivity of a lipase of unknown structure from S to R. Another lipase was engineered for the same goal by simultaneous mutation of four active site residues A variety of other enzymes have recently been engineered by targeted mutagenesis. Mutating three active site residues of penicillin acylase created six variants with improved activity, five of which were triple mutants [27]. Juillerat et al. [28] targeted four active site residues to engineer an O6-alkylguanine-DNA alkyltransferase for the efficient in vivo labeling of fusion proteins. They developed a selection system that allowed them to examine over 20,000 mutants and found that the best variants were triple mutants, suggesting the importance of simultaneously exploring multiple mutations. Novel DNA and RNA polymerases have also been engineered by targeted mutagenesis. Chelliserrykattil and Ellington [29] mutated four amino acids in RNA polymerase to engineer the enzyme to transcribe 2 0 -O-methyl RNA. Using a screen that selected variants that generated more RNA, they identified several mutants that incorporated nucleotides modified at the 2 0 position. Fa et al. [30] used targeted mutagenesis to engineer a DNA polymerase to specifically incorporate 2 0 -O-methyl ribonucleoside triphosphates by mutating six amino acids and selecting improved variants using phage display. Targeted mutagenesis of two active site residues was used to engineer a thioredoxin protein to replace the disulfide bond formation system in Escherichia coli Schultz and co-workers have created tRNA synthetases that charge orthogonal tRNAs with non-natural amino acids by targeting mutagenesis to five or six amino acids involved in substrate recognition. They then performed a positive selection for recognition of the non-natural amino acid and a negative selection against recognition of other amino acids The best mutants discovered by targeted mutagenesis almost always contain multiple mutations. These mutations are often beneficial as single mutants, but evidence is accumulating that at least some of them are beneficial only in combination Recombination Recombining structurally similar proteins can access larger degrees of sequence change than random mutagenesis The family shuffling protocol relies on regions of sequence identity to create crossovers that recombine the sequences of related proteins. This protocol is therefore limited to proteins with more than 70-75% identity, because libraries created from more diverged sequences tend to yield mostly parent sequences. A variety of methods have been developed to avoid this problem in the recombination of divergent sequences by using mismatched PCR primer pairs Although the studies described above demonstrate that recombining highly diverged but homologous sequences can produce libraries of diverse folded sequences, so far there has been little work to test whether it is also a useful method for discovering new functions. A tantalizing hint is that four out of fourteen chimeras of two cytochrome P450 proteins with 64% sequence identity show new product profiles Non-homologous recombination that combines fragments of unrelated proteins is another way to introduce large sequence changes. A new methodology was used to recombine the non-homologous chorismate mutase and fumarase proteins A striking application of non-homologous recombination is Ostermeier and co-workers' creation of a protein that combines the activity of a b-lactamase with the maltoseinduced conformational change of maltose-binding protein. In one experiment, they randomly inserted the lactamase sequence into the maltose-binding protein and screened for mutants with enhanced lactamase activity in the presence of maltose Conclusions Directed evolution is now an established method to engineer enzymes for a wide range of uses. Full-gene random mutagenesis continues to be a straightforward and powerful tool, and studies using this approach repeatedly illustrate that beneficial mutations can occur at unexpected sites. Targeted mutagenesis and recombination can extend directed evolution to the engineering of enzyme properties that require more than a few uncoupled changes in a protein's sequence (which are easily obtained by sequential rounds of random mutagenesis and screening). The increasing incorporation of structural and chemical knowledge will undoubtedly enhance the utility of these methods. The growing use of rational design in conjunction with directed evolution offers the exciting promise of generating libraries containing a high frequency of sequences with the desired functional properties. Update Recent work has emphasized the tendency of directed evolution to improve weak promiscuous functions by broadening specificity, as discussed i

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Mps1 Phosphorylation of Dam1 Couples Kinetochores to Microtubule Plus Ends at Metaphase

    Get PDF
    Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends

    The academy for future science faculty:randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists

    Get PDF
    Background: Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Methods/Design: Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. Discussion: The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such
    corecore