109 research outputs found

    Catalytic pyrolysis of crude glycerol over shaped ZSM-5/bentonite catalysts for bio-BTX synthesis

    Get PDF
    Ex-situ catalytic pyrolysis of crude glycerol for the synthesis of bio-based benzene, toluene and xylenes (bio-BTX) was performed in a tandem micro-reactor (TMR), a batch gram scale reactor and a continuous integrated bench scale unit using ZSM-5/bentonite extrudates. A bio-BTX yield of 8.1 wt.% (14.6% carbon yield) based on crude glycerol was obtained over the fresh catalysts (Cat-F) in the bench scale unit (crude glycerol feed rate of 200 g h−1, pyrolysis temperature of 520 °C and catalytic upgrading temperature of 536 °C). Catalyst activity was shown to be a function of the time on stream (TOS) and after 4.7 h the activity dropped with about 8%. After an oxidative regeneration step to remove coke, the activity of the regenerated catalysts (Cat-R1) was recovered to 95% of the original catalyst activity. After 11 reaction-regeneration cycles, the bio-BTX yield decreased to 5.4 wt.% (9.7% carbon yield) over Cat-R11. The fresh, deactivated and regenerated ZSM-5/bentonite catalysts were characterized in detail using nitrogen physisorption, XRD, ICP-AES, EA, TEM-EDX, TGA, NH3-TPD, pyridine-IR and solid MAS NMR. Coke (10.5 wt.% over Cat-D) was mostly deposited on ZSM-5 planes, and not only decreased the number of Lewis and Brönsted acid sites, but also blocked the pores, resulting in catalyst deactivation. Coke removal was effectively performed using an oxidative treatment. However, exchange of cations (e.g., Na) of the bentonite and possibly also from the crude glycerol feed with protons of ZSM-5 was observed, leading to irreversible deactivation. Furthermore, the layered structure of bentonite collapsed due to the removal of interlamellar water and dehydroxylation

    Cell-cell adhesion regulates Merlin/NF2 interaction with the PAF complex

    Get PDF
    The PAF complex (PAFC) coordinates transcription elongation and mRNA processing and its CDC73/parafibromin subunit functions as a tumour suppressor. The NF2/Merlin tumour suppressor functions both at the cell cortex and nucleus and is a key mediator of contact inhibition but the molecular mechanisms remain unclear. In this study we have used affinity proteomics to identify novel Merlin interacting proteins and show that Merlin forms a complex with multiple proteins involved in RNA processing including the PAFC and the CHD1 chromatin remodeller. Tumour-derived inactivating mutations in both Merlin and the CDC73 PAFC subunit mutually disrupt their interaction and growth suppression by Merlin requires CDC73. Merlin interacts with the PAFC in a cell density-dependent manner and we identify a role for FAT cadherins in regulating the Merlin-PAFC interaction. Our results suggest that in addition to its function within the Hippo pathway, Merlin is part of a tumour suppressor network regulated by cell-cell adhesion which coordinates post-initiation steps of the transcription cycle of genes mediating contact inhibition

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    From mesoscale to nanoscale mechanics in single-wall carbon nanotubes

    Get PDF
    The experimental work was carried out in collaboration with W. Wenseleers and S. Cambré at the University of Antwerp, Belgium. The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). DJD is grateful for support from the Region Rhône-Alpes through the programme “Accueil-PRO 2014” and from the iMUST Labex programme “Mobility in 2015”. ACTD, TFTC, WC, MALM, SB, DM and ASM acknowledge support from the French Agence Nationale de la Recherche through contract ANR-11-NANO-025 “TRI-CO”. ACTD acknowledges postdoctoral grant from Brazilian Ministry of Education (CAPES)

    Cell-cell adhesion regulates Merlin/NF2 interaction with the PAF complex

    Get PDF
    The PAF complex (PAFC) coordinates transcription elongation and mRNA processing and its CDC73/parafibromin subunit functions as a tumour suppressor. The NF2/Merlin tumour suppressor functions both at the cell cortex and nucleus and is a key mediator of contact inhibition but the molecular mechanisms remain unclear. In this study we have used affinity proteomics to identify novel Merlin interacting proteins and show that Merlin forms a complex with multiple proteins involved in RNA processing including the PAFC and the CHD1 chromatin remodeller. Tumour-derived inactivating mutations in both Merlin and the CDC73 PAFC subunit mutually disrupt their interaction and growth suppression by Merlin requires CDC73. Merlin interacts with the PAFC in a cell density-dependent manner and we identify a role for FAT cadherins in regulating the Merlin-PAFC interaction. Our results suggest that in addition to its function within the Hippo pathway, Merlin is part of a tumour suppressor network regulated by cell-cell adhesion which coordinates post-initiation steps of the transcription cycle of genes mediating contact inhibition

    Flexible Graphene Solution-Gated Field-Effect Transistors : Efficient Transducers for Micro-Electrocorticography

    Get PDF
    Brain-computer interfaces and neural prostheses based on the detection of electrocorticography (ECoG) signals are rapidly growing fields of research. Several technologies are currently competing to be the first to reach the market; however, none of them fulfill yet all the requirements of the ideal interface with neurons. Thanks to its biocompatibility, low dimensionality, mechanical flexibility, and electronic properties, graphene is one of the most promising material candidates for neural interfacing. After discussing the operation of graphene solution-gated field-effect transistors (SGFET) and characterizing their performance in saline solution, it is reported here that this technology is suitable for μ-ECoG recordings through studies of spontaneous slow-wave activity, sensory-evoked responses on the visual and auditory cortices, and synchronous activity in a rat model of epilepsy. An in-depth comparison of the signal-to-noise ratio of graphene SGFETs with that of platinum black electrodes confirms that graphene SGFET technology is approaching the performance of state-of-the art neural technologies

    Infectious disease emergence and global change: thinking systemically in a shrinking world

    Get PDF

    Counseling with teen-agers

    No full text
    s.l.144 p.; 21 cm

    Het proces van beroepsvorming bij leraren.

    Get PDF
    Contains fulltext : rapport-r691.pdf (Publisher's version ) (Open Access
    corecore