207 research outputs found

    Analysis of seismically-isolated two-block systems using a multi–rocking-body dynamic model

    Get PDF
    A novel multibody rocking model is developed to investigate the dynamic response of two stacked rigid blocks placed on a linear base isolation device. The model is used to investigate the dynamic response of a realistic statue-pedestal system subject to pulse-like ground motions. The analysis shows that, in general, base isolation increases the safety level of the rocking system. However, for large period pulses or small size blocks, the isolator can amplify the ground motion, resulting in a lower minimum overturning acceleration than for the nonisolated system. Further, the amplification or shock spectrum of a linear mass-dashpot-spring oscillator, was found to be the reciprocal of the minimum nondimensional overturning acceleration of the investigated rocking system. Novel rocking spectra are obtained by normalizing the frequency of the pulse by the frequency of the isolator. The analysis also demonstrates how the dynamic response of the two stacked blocks is equivalent to that of a single-block configuration coincident with the whole system assumed monolithic or the upper block alone, whichever is more slender

    Non-linear dynamic model of a two-bodies vertical spanning wall elastically restrained at the top

    Get PDF
    Understanding the out-of-plane behavior of unreinforced masonry walls is crucial in seismic assessment of existing buildings. Here, the dynamic response of a vertical spanning strip wall, connected to a flexible diaphragm at the top, is investigated. Despite the simplicity of the model, two rocking rigid bodies elastically restrained at the top, the dynamic response is highly nonlinear. This behavior is due to different phenomena: when in motion the system may assume different configurations, with the transition between them due either to impacts or crack opening caused by ground acceleration. An analytical model capable to capture the complex dynamic response of the system is implemented. The equations of motion are first derived, using variational methods, then the events that the system can undergo during motion are studied. Finally, in order to show the potential of the model, some numerical exemplifications are presented applying an earthquake record and a sine pulse to the system

    Organização e aplicação de um caso simulado cts em aulas de química no ensino médio

    Get PDF
    Atualmente muito se discute sobre como a QuĂ­mica Ă© geralmente trabalhada no Ensino MĂ©dio: descontextualizada, sem relaçÔes com a sociedade e o cotidiano dos estudantes. Muitas vezes, o ensino se dĂĄ como se estivesse resumido Ă  memorização de nomes complexos e aplicação de fĂłrmulas na resolução de problemas sem relação com aspectos sociais da ciĂȘncia. Para promover mudanças nesse cenĂĄrio, Ă© necessĂĄrio um posicionamento crĂ­tico por parte de professores e estudantes e compreendemos que a utilização de abordagens CTS (CiĂȘncia, Tecnologia e Sociedade) no ensino de QuĂ­mica pode contribuir nesse sentido. A fim de colaborar com as reflexĂ”es sobre mudanças no foco da Educação QuĂ­mica, buscando formas de romper a barreira do ensino tradicional, apresentamos esse estudo no qual sĂŁo mostrados a organização e aplicação de um Caso Simulado CTS em aulas de QuĂ­mica no Ensino MĂ©dio

    Organização e aplicação de um caso simulado cts em aulas de química no ensino médio

    Get PDF
    Atualmente muito se discute sobre como a QuĂ­mica Ă© geralmente trabalhada no Ensino MĂ©dio: descontextualizada, sem relaçÔes com a sociedade e o cotidiano dos estudantes. Muitas vezes, o ensino se dĂĄ como se estivesse resumido Ă  memorização de nomes complexos e aplicação de fĂłrmulas na resolução de problemas sem relação com aspectos sociais da ciĂȘncia. Para promover mudanças nesse cenĂĄrio, Ă© necessĂĄrio um posicionamento crĂ­tico por parte de professores e estudantes e compreendemos que a utilização de abordagens CTS (CiĂȘncia, Tecnologia e Sociedade) no ensino de QuĂ­mica pode contribuir nesse sentido. A fim de colaborar com as reflexĂ”es sobre mudanças no foco da Educação QuĂ­mica, buscando formas de romper a barreira do ensino tradicional, apresentamos esse estudo no qual sĂŁo mostrados a organização e aplicação de um Caso Simulado CTS em aulas de QuĂ­mica no Ensino MĂ©dio

    Complex ancient genetic structure and cultural transitions in Southern African populations

    Get PDF
    The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries

    The Genetic Structure and History of Africans and African Americans.

    Get PDF
    Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies

    African-American mitochondrial DNAs often match mtDNAs found in multiple African ethnic groups

    Get PDF
    BACKGROUND: Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample. RESULTS: When two independent African-American samples were analyzed, more than half of the sampled HVS-I mtDNA haplotypes exactly matched common haplotypes that were shared among multiple African ethnic groups. Another 40% did not match any sequence in the database, and fewer than 10% were an exact match to a sequence from a single African ethnic group. Differences in the regional distribution of haplotypes were observed in the African database, and the African-American haplotypes were more likely to match haplotypes found in ethnic groups from West or West Central Africa than those found in eastern or southern Africa. Fewer than 14% of the African-American mtDNA sequences matched sequences from only West Africa or only West Central Africa. CONCLUSION: Our database of sub-Saharan mtDNA sequences includes the most common haplotypes that are shared among ethnic groups from multiple regions of Africa. These common haplotypes have been found in half of all sub-Saharan Africans. More than 60% of the remaining haplotypes differ from the common haplotypes at a single nucleotide position in the HVS-I region, and they are likely to occur at varying frequencies within sub-Saharan Africa. However, the finding that 40% of the African-American mtDNAs analyzed had no match in the database indicates that only a small fraction of the total number of African haplotypes has been identified. In addition, the finding that fewer than 10% of African-American mtDNAs matched mtDNA sequences from a single African region suggests that few African Americans might be able to trace their mtDNA lineages to a particular region of Africa, and even fewer will be able to trace their mtDNA to a single ethnic group. However, no firm conclusions should be made until a much larger database is available. It is clear, however, that when identical mtDNA haplotypes are shared among many ethnic groups from different parts of Africa, it is impossible to determine which single ethnic group was the source of a particular maternal ancestor based on the mtDNA sequence

    Mine, Yours, Ours? Sharing Data on Human Genetic Variation

    Get PDF
    The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9%) was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%). The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6%) suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing

    Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus

    Get PDF
    Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species

    Inferring the Demographic History of African Farmers and Pygmy Hunter–Gatherers Using a Multilocus Resequencing Data Set

    Get PDF
    The transition from hunting and gathering to farming involved a major cultural innovation that has spread rapidly over most of the globe in the last ten millennia. In sub-Saharan Africa, hunter–gatherers have begun to shift toward an agriculture-based lifestyle over the last 5,000 years. Only a few populations still base their mode of subsistence on hunting and gathering. The Pygmies are considered to be the largest group of mobile hunter–gatherers of Africa. They dwell in equatorial rainforests and are characterized by their short mean stature. However, little is known about the chronology of the demographic events—size changes, population splits, and gene flow—ultimately giving rise to contemporary Pygmy (Western and Eastern) groups and neighboring agricultural populations. We studied the branching history of Pygmy hunter–gatherers and agricultural populations from Africa and estimated separation times and gene flow between these populations. We resequenced 24 independent noncoding regions across the genome, corresponding to a total of ∌33 kb per individual, in 236 samples from seven Pygmy and five agricultural populations dispersed over the African continent. We used simulation-based inference to identify the historical model best fitting our data. The model identified included the early divergence of the ancestors of Pygmy hunter–gatherers and farming populations ∌60,000 years ago, followed by a split of the Pygmies' ancestors into the Western and Eastern Pygmy groups ∌20,000 years ago. Our findings increase knowledge of the history of the peopling of the African continent in a region lacking archaeological data. An appreciation of the demographic and adaptive history of African populations with different modes of subsistence should improve our understanding of the influence of human lifestyles on genome diversity
    • 

    corecore