872 research outputs found

    REFERQUAL: A pilot study of a new service quality assessment instrument in the GP Exercise Referral scheme setting

    Get PDF
    Background The development of an instrument accurately assessing service quality in the GP Exercise Referral Scheme (ERS) industry could potentially inform scheme organisers of the factors that affect adherence rates leading to the implementation of strategic interventions aimed at reducing client drop-out. Methods A modified version of the SERVQUAL instrument was designed for use in the ERS setting and subsequently piloted amongst 27 ERS clients. Results Test re-test correlations were calculated via Pearson's 'r' or Spearman's 'rho', depending on whether the variables were Normally Distributed, to show a significant (mean r = 0.957, SD = 0.02, p < 0.05; mean rho = 0.934, SD = 0.03, p < 0.05) relationship between all items within the questionnaire. In addition, satisfactory internal consistency was demonstrated via Cronbach's 'α'. Furthermore, clients responded favourably towards the usability, wording and applicability of the instrument's items. Conclusion REFERQUAL is considered to represent promise as a suitable tool for future evaluation of service quality within the ERS community. Future research should further assess the validity and reliability of this instrument through the use of a confirmatory factor analysis to scrutinise the proposed dimensional structure

    Categorial Compositionality III: F-(co)algebras and the Systematicity of Recursive Capacities in Human Cognition

    Get PDF
    Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language

    The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

    Get PDF
    Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history. The ordered-rotation dominated orbits with near maximum circularity λz1\lambda_z \simeq1 and the random-motion dominated orbits with low circularity λz0\lambda_z \simeq0 are called kinematically cold and kinematically hot, respectively. The fraction of stars on `cold' orbits, compared to the fraction of stars on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories. Here we present such orbit distributions, derived from stellar kinematic maps via orbit-based modelling for a well defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey, includes the main morphological galaxy types and spans the total stellar mass range from 108.710^{8.7} to 1011.910^{11.9} solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass, p(λz  M)p(\lambda_z~|~M_\star), and its volume-averaged total distribution, p(λz)p(\lambda_z). We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25λz0.80.25\le \lambda_z \le 0.8 than on either `cold' or `hot' orbits. This orbit-based "Hubble diagram" provides a benchmark for galaxy formation simulations in a cosmological context

    Giving risk management culture a role in strategic planning

    Get PDF
    WOS: 000413939000023Strategically planned and implemented risk management paves the way for competitive advantage and a decisive edge for global financial institutions. The importance of risk management becomes more evident in financial instability periods. The failure of global financial institutions in the recent financial crisis revealed that firms with strong risk management and culture were more prepared and economically less damaged. As financial institutions have been criticized severely about risk management practices, it also becomes clear that most financial institutions have difficulties in developing a risk management culture. To have a clear understanding of risk management culture, the chapter aims to highlight a need to extend our understanding of risk management culture and how it can find a voice in the strategic planning of global financial institutions

    What we talk about when we talk about "global mindset": managerial cognition in multinational corporations

    Get PDF
    Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research

    The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    Get PDF
    In the updated APOGEE-Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Delta alpha(ML), YREC similar to 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H]- -0.5)

    Papuan mitochondrial genomes and the settlement of Sahul

    Get PDF
    New Guineans represent one of the oldest locally continuous populations outside Africa, harboring among the greatest linguistic and genetic diversity on the planet. Archeological and genetic evidence suggest that their ancestors reached Sahul (present day New Guinea and Australia) by at least 55,000 years ago (kya). However, little is known about this early settlement phase or subsequent dispersal and population structuring over the subsequent period of time. Here we report 379 complete Papuan mitochondrial genomes from across Papua New Guinea, which allow us to reconstruct the phylogenetic and phylogeographic history of northern Sahul. Our results support the arrival of two groups of settlers in Sahul within the same broad time window (50–65 kya), each carrying a different set of maternal lineages and settling Northern and Southern Sahul separately. Strong geographic structure in northern Sahul remains visible today, indicating limited dispersal over time despite major climatic, cultural, and historical changes. However, following a period of isolation lasting nearly 20 ky after initial settlement, environmental changes postdating the Last Glacial Maximum stimulated diversification of mtDNA lineages and greater interactions within and beyond Northern Sahul, to Southern Sahul, Wallacea and beyond. Later, in the Holocene, populations from New Guinea, in contrast to those of Australia, participated in early interactions with incoming Asian populations from Island Southeast Asia and continuing into Oceania

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page
    corecore