26 research outputs found

    Management of anaphylaxis due to COVID-19 vaccines in the elderly

    Get PDF
    Older adults, especially men and/or those with diabetes, hypertension, and/or obesity, are prone to severe COVID-19. In some countries, older adults, particularly those residing in nursing homes, have been prioritized to receive COVID-19 vaccines due to high risk of death. In very rare instances, the COVID-19 vaccines can induce anaphylaxis, and the management of anaphylaxis in older people should be considered carefully. An ARIA-EAACI-EuGMS (Allergic Rhinitis and its Impact on Asthma, European Academy of Allergy and Clinical Immunology, and European Geriatric Medicine Society) Working Group has proposed some recommendations for older adults receiving the COVID-19 vaccines. Anaphylaxis to COVID-19 vaccines is extremely rare (from 1 per 100,000 to 5 per million injections). Symptoms are similar in younger and older adults but they tend to be more severe in the older patients. Adrenaline is the mainstay treatment and should be readily available. A flowchart is proposed to manage anaphylaxis in the older patients.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Research needs in allergy: an EAACI position paper, in collaboration with EFA

    Get PDF
    Abstract In less than half a century, allergy, originally perceived as a rare disease, has become a major public health threat, today affecting the lives of more than 60 million people in Europe, and probably close to one billion worldwide, thereby heavily impacting the budgets of public health systems. More disturbingly, its prevalence and impact are on the rise, a development that has been associated with environmental and lifestyle changes accompanying the continuous process of urbanization and globalization. Therefore, there is an urgent need to prioritize and concert research efforts in the field of allergy, in order to achieve sustainable results on prevention, diagnosis and treatment of this most prevalent chronic disease of the 21 st century. The European Academy of Allergy and Clinical Immunology (EAACI) is the leading professional organization in the field of allergy, promoting excellence in clinical care, education, training and basic and translational research, all with the ultimate goal of improving the health of allergic patients. The European Federation of Allergy and Airways Diseases Patients' Associations (EFA) is a non-profit network of allergy, asthma and Chronic Obstructive Pulmonary Disorder (COPD) patients' organizations. In support of their missions, the present EAACI Position Paper, in collaboration with EFA, highlights the most important research needs in the field of allergy to serve as key recommendations for future research funding at the national and European levels. Although allergies may involve almost every organ of the body and an array of diverse external factors act as triggers, there are several common themes that need to be prioritized in research efforts. As in many other chronic diseases, effective prevention, curative treatment and accurate, rapid diagnosis represent major unmet needs. Detailed phenotyping/endotyping stands out as widely required in order to arrange or re-categorize clinical syndromes into more coherent, uniform and treatment-responsive groups. Research efforts to unveil the basic pathophysiologic pathways and mechanisms, thus leading to the comprehension and resolution of the pathophysiologic complexity of allergies will allow for the design of novel patient-oriented diagnostic and treatment protocols. Several allergic diseases require well-controlled epidemiological description and surveillance, using disease registries, pharmacoeconomic evaluation, as well as large biobanks. Additionally, there is a need for extensive studies to bring promising new biotechnological innovations, such as biological agents, vaccines of modified allergen molecules and engineered components for allergy diagnosis, closer to clinical practice. Finally, particular attention should be paid to the difficult-to-manage, precarious and costly severe disease forms and/or exacerbations. Nonetheless, currently arising treatments, mainly in the fields of immunotherapy and biologicals, hold great promise for targeted and causal management of allergic conditions. Active involvement of all stakeholders, including Patient Organizations and policy makers are necessary to achieve the aims emphasized herein

    Accuracy of Handheld Blood Glucose Meters at High Altitude

    Get PDF
    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. Methodology/Principal Findings: Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs) were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias 6.5 mmol/L) and Conclusion: At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy

    Error grid analysis of 5, 10, 15 and 20 mmol/L glucose testing samples of BGMs (y- axis) against reference (GHex) (x-axis) at sea level.

    No full text
    <p>Note: Leftward deviation from dashed line means overestimation of true glucose by tested BGM compared to GHex reference glucose and vice versa. No differences were noted outside of predefined criteria due to testing conditions at sealevel (0 m) in and outside the hypobaric chamber. Black diamonds  =  Contour; Black squares  =  Accu Chek Aviva; Black circles  =  Accuchek Compact Plus; Black triangles  =  Freestyle Mini; Black asterixes  =  Precision; Black stripes  =  Hemocue; White squares  =  Klinion; White circles  =  Statstrip; White diamonds  =  Glucocard; Dashed line  =  GHex reference glucose.</p

    Relative bias (%) of GOX based BGMs compared to the Hexokinase laboratory reference method at different simulated altitudes (10 mmol/L glucose sample).

    No full text
    <p>Note: normobaric BGMs stay at sea level. (normo =  bias under normobaric conditions (sea level); hypo =  bias under hypobaric conditions (simulated altitude),</p><p>* =  reference method).</p

    Error grid analysis of 5, 10, 15 and 20 mmol/L glucose testing samples of BGMs (y- axis) against reference (GHex) (x-axis) at 5000 m simulated altitude.

    No full text
    <p>Note: Leftward deviation from dashed line means overestimation of true glucose by tested BGM compared to GHex reference glucose and vice versa. Black diamonds  =  Contour; Black squares  =  Accu Chek Aviva; Black circles  =  Accuchek Compact Plus; Black triangles  =  Freestyle Mini; Black asterixes  =  Precision; Black stripes  =  Hemocue; White squares  =  Klinion; White circles  =  Statstrip; White diamonds  =  Glucocard; Dashed line  =  GHex reference glucose.</p
    corecore