12 research outputs found
Common Variants in the Type 2 Diabetes KCNQ1 Gene Are Associated with Impairments in Insulin Secretion During Hyperglycaemic Glucose Clamp
Background: Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients. Methodology: The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp. Principal Findings: We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07-1.35, p = 0.002). The risk C-allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion (p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic complications. Conclusions: Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with lipid metabolism
Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Antimicrobial activity of two apocarotenoids isolated from Cochlospermum tinctorium rhizome
SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Exercise and Type 2 Diabetes Mellitus:Changes in Tissue-specific Fat Distribution and Cardiac Function
Purpose: To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Materials and Methods: Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years 6 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Results: Exercise reduced visceral abdominal fat volume from 348 mL +/- 57 to 219 mL +/- 33 (P <.01), and subcutaneous abdominal fat volume remained unchanged (P = .9). Exercise decreased hepatic TG content from 6.8% +/- 2.3 to 4.6% +/- 1.6 (P <.01) and paracardial fat volume from 4.6 mL +/- 0.9 to 3.7 mL +/- 0.8 (P = .02). Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). Conclusion: A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. (C) RSNA, 201
The ACCELERATE Plus (assessment and communication excellence for safe patient outcomes) Trial Protocol: a stepped-wedge cluster randomised trial, cost-benefit analysis, and process evaluation
Background: Nurses play an essential role in patient safety. Inadequate nursing physical assessment and communication in handover practices are associated with increased patient deterioration, falls and pressure injuries. Despite internationally implemented rapid response systems, falls and pressure injury reduction strategies, and recommendations to conduct clinical handovers at patients’ bedside, adverse events persist. This trial aims to evaluate the effectiveness, implementation, and cost–benefit of an externally facilitated, nurse-led intervention delivered at the ward level for core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication. We hypothesise the trial will reduce medical emergency team calls, unplanned intensive care unit admissions, falls and pressure injuries. Methods: A stepped-wedge cluster randomised trial will be conducted over 52 weeks. The intervention consists of a nursing core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication and will be implemented in 24 wards across eight hospitals. The intervention will use theoretically informed implementation strategies for changing clinician behaviour, consisting of: nursing executive site engagement; a train-the-trainer model for cascading facilitation; embedded site leads; nursing unit manager leadership training; nursing and medical ward-level clinical champions; ward nurses’ education workshops; intervention tailoring; and reminders. The primary outcome will be a composite measure of medical emergency team calls (rapid response calls and ‘Code Blue’ calls), unplanned intensive care unit admissions, in-hospital falls and hospital-acquired pressure injuries; these measures individually will also form secondary outcomes. Other secondary outcomes are: i) patient-reported experience measures of receiving safe and patient-centred care, ii) nurses’ perceptions of barriers to physical assessment, readiness to change, and staff engagement, and iii) nurses’ and medical officers’ perceptions of safety culture and interprofessional collaboration. Primary outcome data will be collected for the trial duration, and secondary outcome surveys will be collected prior to each step and at trial conclusion. A cost–benefit analysis and post-trial process evaluation will also be undertaken. Discussion: If effective, this intervention has the potential to improve nursing care, reduce patient harm and improve patient outcomes. The evidence-based implementation strategy has been designed to be embedded within existing hospital workforces; if cost-effective, it will be readily translatable to other hospitals nationally. Trial registration: Australian New Zealand Clinical Trials Registry ID: ACTRN12622000155796. Date registered: 31/01/2022
The ACCELERATE Plus (assessment and communication excellence for safe patient outcomes) Trial Protocol: a stepped-wedge cluster randomised trial, cost-benefit analysis, and process evaluation
Abstract Background Nurses play an essential role in patient safety. Inadequate nursing physical assessment and communication in handover practices are associated with increased patient deterioration, falls and pressure injuries. Despite internationally implemented rapid response systems, falls and pressure injury reduction strategies, and recommendations to conduct clinical handovers at patients’ bedside, adverse events persist. This trial aims to evaluate the effectiveness, implementation, and cost–benefit of an externally facilitated, nurse-led intervention delivered at the ward level for core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication. We hypothesise the trial will reduce medical emergency team calls, unplanned intensive care unit admissions, falls and pressure injuries. Methods A stepped-wedge cluster randomised trial will be conducted over 52 weeks. The intervention consists of a nursing core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication and will be implemented in 24 wards across eight hospitals. The intervention will use theoretically informed implementation strategies for changing clinician behaviour, consisting of: nursing executive site engagement; a train-the-trainer model for cascading facilitation; embedded site leads; nursing unit manager leadership training; nursing and medical ward-level clinical champions; ward nurses’ education workshops; intervention tailoring; and reminders. The primary outcome will be a composite measure of medical emergency team calls (rapid response calls and ‘Code Blue’ calls), unplanned intensive care unit admissions, in-hospital falls and hospital-acquired pressure injuries; these measures individually will also form secondary outcomes. Other secondary outcomes are: i) patient-reported experience measures of receiving safe and patient-centred care, ii) nurses’ perceptions of barriers to physical assessment, readiness to change, and staff engagement, and iii) nurses’ and medical officers’ perceptions of safety culture and interprofessional collaboration. Primary outcome data will be collected for the trial duration, and secondary outcome surveys will be collected prior to each step and at trial conclusion. A cost–benefit analysis and post-trial process evaluation will also be undertaken. Discussion If effective, this intervention has the potential to improve nursing care, reduce patient harm and improve patient outcomes. The evidence-based implementation strategy has been designed to be embedded within existing hospital workforces; if cost-effective, it will be readily translatable to other hospitals nationally. Trial registration Australian New Zealand Clinical Trials Registry ID: ACTRN12622000155796. Date registered: 31/01/2022
Effect of <i>KCNQ1</i> variants rs151290, rs2237892 and rs2237895 on beta-cell function as assessed with hyperglycaemic clamp.
a<p>Adjusted for glucose tolerance status (NGT/IGT), study center, age, gender and BMI.</p><p>All variables were log-transformed before analysis. <i>p</i>-values were computed for different additive models using linear generalized estimating equations (GEE) which takes into account the family relatedness when computing the standard errors. Alleles in bold are the risk alleles for type 2 diabetes identified by previous studies.</p><p>DI, disposition index; IGT, impaired glucose tolerance; ISI, insulin sensitivity index; ND, not determined; NGT, normal glucose tolerance.</p
Association of the <i>KCNQ1</i> variants with type 2 diabetes in the Dutch population.
a<p>Adjusted for age, sex and study center.</p>b<p>p-value for the additive model.</p><p>For each variant the C-allele is the risk allele for type 2 diabetes as identified by previous studies. RAF: risk allele frequency. T2D: type 2 diabetes.</p