183 research outputs found
Backscattering of Ultrasonic Leaky Waves from Liquid-Solid Interfaces
It is well known that when a finite ultrasonic beam of a given spatial distribution is incident at the Rayleigh angle to a liquid-solid interface, the spatial distribution of the reflected field may be altered significantly. The âenergy redistributionâ is due to the interference between the specularly reflected beam and a surface wave which has leaked back to the water. The âshapeâ of the reflected field depends on the so-called Schoch displacement (which is characteristic of the interface) and on the width of the ultrasonic beam. It has also been observed that significant energy is scattered back to the transmitter at the Rayleigh angle. Experimental results will be presented on the evaluation of the parameters effecting the back-scattered amplitude. The backscattered Rayleigh angle phenomena are also applied to measured surface wave velocities of anisotropic materials such as casts and welds
Measurement of circulating filarial antigen levels in human blood with a point-of-care test strip and a portable spectrodensitometer
The Alere Filariasis Test Strip (FTS) is a qualitative, point-of-care diagnostic tool that detects Wuchereria bancrofti circulating filarial antigen (CFA) in human blood, serum, or plasma. The Global Program to Eliminate Lymphatic Filariasis employs the FTS for mapping filariasis-endemic areas and assessing the success of elimination efforts. The objective of this study was to explore the relationship between the intensity of positive test lines obtained by FTS with CFA levels as determined by enzyme-linked immunosorbent assay (ELISA) with blood and plasma samples from 188 individuals who live in a filariasis-endemic area. The intensity of the FTS test line was assessed visually to provide a semiquantitative score (visual Filariasis Test Strip [vFTS]), and line intensity was measured with a portable spectrodensitometer (quantitative Filariasis Test Strip [gFTS]). These results were compared with antigen levels measured by ELISA in plasma from the same subjects. qFTS measurements were highly correlated with vFTS scores (p = 0.94; P < 0.001) and with plasma CFA levels (p = 0.91; P < 0.001). Thus, qFTS assessment is a convenient method for quantifying W bancrofti CFA levels in human blood, which are correlated with adult worm burdens. This tool may be useful for assessing the impact of treatment on adult filarial worms in individuals and communities
An oceanâice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway
150 ÎŒm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst â e.g. dinocyst â assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281
The impact of four years of semiannual treatments with albendazole alone on lymphatic filariasis and soil-transmitted helminth infections: A community-based study in the Democratic Republic of the Congo
BACKGROUND: The World Health Organization now recommends semiannual mass drug administration (MDA) of albendazole with integrated vector management as an option for eliminating lymphatic filariasis (LF) in areas of loiasis-endemic countries where it may not be safe to use diethylcarbamazine or ivermectin in MDA programs. However, the published evidence base to support this policy is thin, and uptake by national programs has been slow.
METHODOLOGY/PRINCIPAL FINDINGS: We conducted a community trial to assess the impact of semiannual MDA on lymphatic filariasis and soil-transmitted helminth infections (STH) in two villages in the Bandundu province of the Democratic Republic of the Congo with moderately high prevalences for LF and hookworm infections. MDA with albendazole was provided every six months from June 2014 to December 2017 with treatment coverages of the eligible population (all â„ 2 year of age) that ranged between 56% and 88%. No adverse effects were reported during the trial. Evaluation at 48 months, (i.e. 6 months after the 8th round of MDA), showed that W. bancrofti microfilaremia (Mf) prevalence in the study communities had decreased between 2014 to 2018 from 12% to 0.9% (p\u3c0.001). The prevalence of W. bancrofti antigenemia was also significantly reduced from 31.6% to 8.5% (p\u3c0.001). MDA with albendazole also reduced hookworm, Ascaris lumbricoides and Trichuris trichiura infection prevalences in the community from 58.6% to 21.2% (p\u3c0.001), from 14.0% to 1.6% and 4.1% to 2.9%, respectively. Hookworm and Ascaris infection intensities were reduced by 93% (p = 0.02) and 57% (p = 0.03), respectively. In contrast, Trichuris infection intensity was not significantly reduced by MDA (p = 0.61) over this time period.
CONCLUSION/SIGNIFICANCE: These results provide strong evidence that semiannual MDA with albendazole alone is a safe and effective strategy for LF elimination in Central Africa. Community MDA also had a major impact on STH infections
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planetâs birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25â7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10â100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed â using conservative estimates of mission performance and a full model of all significant noise sources in the measurement â using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL â in line with the stated mission objectives â will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Investigating combined toxicity of binary mixtures in bees: meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment
Bees are exposed to a wide range of multiple chemicals âchemical mixturesâ from anthropogenic (e.g. plant protection products or veterinary products) or natural origin (e.g. mycotoxins, plant toxins). Quantifying the relative impact of multiple chemicals on bee health compared with other environmental stressors (e.g. varroa, viruses, and nutrition) has been identified as a priority to support the development of holistic risk assessment methods. Here, extensive literature searches and data collection of available laboratory studies on combined toxicity data for binary mixtures of pesticides and non-chemical stressors has been performed for honey bees (Apis mellifera), wild bees (Bombus spp.) and solitary bee species (Osmia spp.). From 957 screened publications, 14 publications provided 218 binary mixture toxicity data mostly for acute mortality (lethal dose: LD50) after contact exposure (61%), with fewer studies reporting chronic oral toxicity (20%) and acute oral LC50 values (19%). From the data collection, available dose response data for 92 binary mixtures were modelled using a Toxic Unit (TU) approach and the MIXTOX modelling tool to test assumptions of combined toxicity i.e. concentration addition (CA), and interactions (i.e. synergism, antagonism). The magnitude of interactions was quantified as the Model Deviation Ratio (MDR). The CA model applied to 17% of cases while synergism and antagonism were observed for 72% (MDRâŻ>âŻ1.25) and 11% (MDRâŻ<âŻ0.83) respectively. Most synergistic effects (55%) were observed as interactions between sterol-biosynthesis-inhibiting (SBI) fungicides and insecticide/acaricide. The mechanisms behind such synergistic effects of binary mixtures in bees are known to involve direct cytochrome P450 (CYP) inhibition, resulting in an increase in internal dose and toxicity of the binary mixture. Moreover, bees are known to have the lowest number of CYP copies and other detoxification enzymes in the insect kingdom. In the light of these findings, occurrence of these binary mixtures in relevant crops (frequency and concentrations) would need to be investigated. Addressing this exposure dimension remains critical to characterise the likelihood and plausibility of such interactions to occur under field realistic conditions. Finally, data gaps and further work for the development of risk assessment methods to assess multiple stressors in bees including chemicals and non-chemical stressors in bees are discussed
- âŠ