231 research outputs found

    CCD BV and 2MASS photometric study of the open cluster NGC 1513

    Full text link
    We present CCD BV and JHKs_{s} 2MASS photometric data for the open cluster NGC 1513. We observed 609 stars in the direction of the cluster up to a limiting magnitude of V19V\sim19 mag. The star count method shows that the centre of the cluster lies at α2000=04h09m36s\alpha_{2000}=04^{h}09^{m}36^{s}, δ2000=492843\delta_{2000}=49^{\circ}28^{'}43^{''} and its angular size is r=10r=10 arcmin. The optical and near-infrared two-colour diagrams reveal the colour excesses in the direction of the cluster as E(BV)=0.68±0.06E(B-V)=0.68\pm0.06, E(JH)=0.21±0.02E(J-H)=0.21\pm0.02 and E(JKs)=0.33±0.04E(J-K_{s})=0.33\pm0.04 mag. These results are consistent with normal interstellar extinction values. Optical and near-infrared Zero Age Main-Sequences (ZAMS) provided an average distance modulus of (mM)0=10.80±0.13(m-M)_{0}=10.80\pm0.13 mag, which can be translated into a distance of 1440±801440\pm80 pc. Finally, using Padova isochrones we determined the metallicity and age of the cluster as Z=0.015±0.004Z=0.015\pm 0.004 ([M/H]=0.10±0.10[M/H]=-0.10 \pm 0.10 dex) and log(t/yr)=8.40±0.04\log (t/yr) = 8.40\pm0.04, respectively.Comment: 15 pages, 12 figures and 4 tables, accepted for publication in Astrophysics & Space Scienc

    A Universal Vertical Stellar Density Distribution Law for the Galaxy

    Full text link
    We reduced the observational logarithmic space densities in the vertical direction up to 8 kpc from the galactic plane, for stars with absolute magnitudes (5,6], (6,7] and [5,10] in the fields #0952+5245 and SA114, to a single exponential density law. One of three parameters in the quadratic expression of the density law corresponds to the local space density for stars with absolute magnitudes in question. There is no need of any definition for scaleheights or population types. We confirm with the arguments of non-discrete thin and thick discs for our Galaxy and propose a single structure up to several kiloparsecs from the galactic plane. The logarithmic space densities evaluated by this law for the ELAIS field fit to the observational ones. Whereas, there are considerable offsets for the logarithmic space densities produced by two sets of classical galactic model parameters from the observational ones, for the same field.Comment: 9 pages, 1 figure and 10 tables, accepted for publication in Astrophysics & Space Scienc

    Transit Timing Analysis in the HAT-P-32 system

    Get PDF
    We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI network. In 25 cases, complete transit light curves with a timing precision better than 1.41.4\:min have been obtained. These light curves have been used to refine the system properties, namely inclination ii, planet-to-star radius ratio Rp/RsR_\textrm{p}/R_\textrm{s}, and the ratio between the semimajor axis and the stellar radius a/Rsa/R_\textrm{s}. First analyses by Hartman et al. (2011) suggest the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we can exclude TTV amplitudes of more than 1.5\sim1.5min.Comment: MNRAS accepted; 13 pages, 10 figure

    Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance

    Get PDF
    The revolutionary CRISPR/Cas9 genome-editing technology has emerged as a powerful tool for plant improvement, offering unprecedented precision and efficiency in making targeted gene modifications. This powerful and practical approach to genome editing offers tremendous opportunities for crop improvement, surpassing the capabilities of conventional breeding techniques. This article provides an overview of recent advancements and challenges associated with the application of CRISPR/Cas9 in plant improvement. The potential of CRISPR/Cas9 in terms of developing crops with enhanced resistance to biotic and abiotic stresses is highlighted, with examples of genes edited to confer disease resistance, drought tolerance, salt tolerance, and cold tolerance. Here, we also discuss the importance of off-target effects and the efforts made to mitigate them, including the use of shorter single-guide RNAs and dual Cas9 nickases. Furthermore, alternative delivery methods, such as protein- and RNA-based approaches, are explored, and they could potentially avoid the integration of foreign DNA into the plant genome, thus alleviating concerns related to genetically modified organisms (GMOs). We emphasize the significance of CRISPR/Cas9 in accelerating crop breeding processes, reducing editing time and costs, and enabling the introduction of desired traits at the nucleotide level. As the field of genome editing continues to evolve, it is anticipated that CRISPR/Cas9 will remain a prominent tool for crop improvement, disease resistance, and adaptation to challenging environmental conditions

    broadband visible light emission from nominally undoped and hbox cr 3 doped garnet nanopowders

    Get PDF
    Synthetic garnet nanopowders of Y 3 Al 5 O 12 (YAG) and Gd 3 Ga 5 O 12 (GGG) were produced, and the occurrence of a broadband bright visible emission by nominally undoped YAG and GGG and Cr 3+ doped GGG, depending on the environment pressure, as well as exciting on the pumping power, was demonstrated. The results indicate that high-intensity infrared laser irradiation in samples not only leads to heating (melting effects) but also produces visible broadband emission. Low pressure of the powders' environment favors the white light emission by lowering the threshold pumping power. A hypothesis on the nature of the emission is presented

    IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia

    Get PDF
    CONCLUSION: STAT3 may be considered as a therapeutic target for cachectic patients with gastric, lung and breast cancer. Furthermore, IL-6 mediates STAT3 activation in cachectic gastric and breast cancer patients (Tab. 5, Fig. 2, Ref. 62)

    The influence of textile materials on flame resistance ratings of professional uniforms

    Get PDF
    This study compares the flame speed of different textile materials employed in professional uniforms. Five different garments of aeronauts’ uniforms were analyzed (totaling 200 specimens submitted to flammability tests). Plain weaves and twill weaves composed by 100% CO; 100% PES; 67% PES/33% CO; 50% PES/50% WO; and 55% PES/45%WO were analyzed in the warp and filling directions. The flame speed of each material was determined, and differences in the flame propagation of the fabrics were identified. The lowest flame speed occurred for the material 50% PES/50% WO plain weave and weft direction (0.742 ± 0.140 m/s). The highest flame speed was 3.698 ± 1.806 cm/s for the material 67%PES/33%CO, plain weave and filling direction. Future experiments for reducing the fabric flammability of the uniforms could be related to more closed fabric constructions; mixtures with synthetic fibers to add functionality; changing the direction of the fabric; and changing the weight and torsion of its constituent yarns.São Paulo Research Foundation—FAPESP (“Fundação de Amparo à Pesquisa do Estado de São Paulo”) Grant Number 2016/01331-

    Chemical gradients in the Milky Way from the RAVE data

    Get PDF
    Aims. We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Thanks to the large number of stars of our RAVE sample we can study how the gradients vary as function of the distance from the Galactic plane. Methods. We analysed three different samples selected from three independent datasets: a sample of 19 962 dwarf stars selected from the RAVE database, a sample of 10 616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. The three samples were analysed by using the very same method for comparison purposes. We integrated the Galactic orbits and obtained the guiding radii (R-g) and the maximum distances from the Galactic plane reached by the stars along their orbits (Z(max)). We measured the chemical gradients as functions of R-g at different Z(max). Results. We found that the chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Z(max) < 0.4 kpc and 4.5 < R-g(kpc) < 9.5, the iron gradient for the RAVE sample is d[Fe/H]/dR(g) = -0.065 dex kpc(-1), whereas for the GCS sample it is d[Fe/H]/dR(g) = -0.043 dex kpc(-1) with internal errors of +/-0.002 and +/-0.004 dex kpc(-1), respectively. The gradients of the RAVE and GCS samples become flatter at larger Z(max). Conversely, the mock sample has a positive iron gradient of d[Fe/H]/dR(g) = +0.053 +/- 0.003 dex kpc(-1) at Z(max) < 0.4 kpc and remains positive at any Z(max). These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besancon model. In addition, the low metallicity and asymmetric drift of the thick disc causes a shift of the stars towards lower R-g and metallicity which, together with the thin-disc stars with a higher metallicity and R-g, generates a fictitious positive gradient of the full sample. The flatter gradient at larger Z(max) found in the RAVE and the GCS samples may therefore be due to the superposition of thin-and thick-disc stars, which mimicks a flatter or positive gradient. This does not exclude the possibility that the thick disc has no chemical gradient. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density; ii) decreasing the vertical velocity; and iii) increasing the metallicity of the thick disc in the Besancon model

    In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different types of bioabsorbable and nonresorbable membranes have been widely used for guided tissue regeneration (GTR) with its ultimate goal of regenerating lost periodontal structures. The purpose of the present study was to evaluate the biological effects of various bioabsorbable and nonresorbable membranes in cultures of primary human gingival fibroblasts (HGF), periodontal ligament fibroblasts (PDLF) and human osteoblast-like (HOB) cells <it>in vitro</it>.</p> <p>Methods</p> <p>Three commercially available collagen membranes [TutoDent<sup>® </sup>(TD), Resodont<sup>® </sup>(RD) and BioGide<sup>® </sup>(BG)] as well as three nonresorbable polytetrafluoroethylene (PTFE) membranes [ACE (AC), Cytoplast<sup>® </sup>(CT) and TefGen-FD<sup>® </sup>(TG)] were tested. Cells plated on culture dishes (CD) served as positive controls. The effect of the barrier membranes on HGF, PDLF as well as HOB cells was assessed by the Alamar Blue fluorometric proliferation assay after 1, 2.5, 4, 24 and 48 h time periods. The structural and morphological properties of the membranes were evaluated by scanning electron microscopy (SEM).</p> <p>Results</p> <p>The results showed that of the six barriers tested, TD and RD demonstrated the highest rate of HGF proliferation at both earlier (1 h) and later (48 h) time periods (<it>P </it>< 0.001) compared to all other tested barriers and CD. Similarly, TD, RD and BG had significantly higher numbers of cells at all time periods when compared with the positive control in PDLF culture (<it>P </it>≤ 0.001). In HOB cell culture, the highest rate of cell proliferation was also calculated for TD at all time periods (<it>P </it>< 0.001). SEM observations demonstrated a microporous structure of all collagen membranes, with a compact top surface and a porous bottom surface, whereas the nonresorbable PTFE membranes demonstrated a homogenous structure with a symmetric dense skin layer.</p> <p>Conclusion</p> <p>Results from the present study suggested that GTR membrane materials, per se, may influence cell proliferation in the process of periodontal tissue/bone regeneration. Among the six membranes examined, the bioabsorbable membranes demonstrated to be more suitable to stimulate cellular proliferation compared to nonresorbable PTFE membranes.</p
    corecore