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İbrahim Erdoğan 1,2 , Birsen Cevher-Keskin 3, Özlem Bilir 2,4, Yiguo Hong 2,5 and Mahmut Tör 2,*

1 Department of Agricultural Biotechnology, Faculty of Agriculture, Kirsehir Ahi Evran University,
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Simple Summary: Pests and diseases, along with environmental factors, significantly contribute
to yield losses in crop production. Considering the detrimental impact of pesticides on both the
economy and the environment, it is crucial to urgently develop methods that can prevent such
damage. Additionally, it is imperative to address challenges posed by the growing world population,
climate change, and the emergence of new pathogens. In this century, one of the most important
advancements in terms of crop improvement lies in faster and more effective genome editing than is
possible via traditional plant breeding, resulting in the production of transgene-free plant lines. The
CRISPR/Cas9 genome-editing technique has emerged as the most widely used tool for creating plants
with desirable traits, such as disease resistance and tolerance to abiotic stresses. These technologies
enable the cultivation of crop plants capable of adapting to these new conditions, offering novel
opportunities and solutions.

Abstract: The revolutionary CRISPR/Cas9 genome-editing technology has emerged as a powerful
tool for plant improvement, offering unprecedented precision and efficiency in making targeted gene
modifications. This powerful and practical approach to genome editing offers tremendous opportu-
nities for crop improvement, surpassing the capabilities of conventional breeding techniques. This
article provides an overview of recent advancements and challenges associated with the application
of CRISPR/Cas9 in plant improvement. The potential of CRISPR/Cas9 in terms of developing crops
with enhanced resistance to biotic and abiotic stresses is highlighted, with examples of genes edited
to confer disease resistance, drought tolerance, salt tolerance, and cold tolerance. Here, we also
discuss the importance of off-target effects and the efforts made to mitigate them, including the use
of shorter single-guide RNAs and dual Cas9 nickases. Furthermore, alternative delivery methods,
such as protein- and RNA-based approaches, are explored, and they could potentially avoid the
integration of foreign DNA into the plant genome, thus alleviating concerns related to genetically
modified organisms (GMOs). We emphasize the significance of CRISPR/Cas9 in accelerating crop
breeding processes, reducing editing time and costs, and enabling the introduction of desired traits
at the nucleotide level. As the field of genome editing continues to evolve, it is anticipated that
CRISPR/Cas9 will remain a prominent tool for crop improvement, disease resistance, and adaptation
to challenging environmental conditions.
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1. Introduction

Global food security faces multiple threats, including the challenges posed by a
growing population, climate change, and the constant evolution and emergence of plant
diseases [1–3]. By 2050, the world population is projected to exceed nine and a half billion,
leading to a substantial increase in food consumption of 100–110%. However, current
agricultural capacities suggest that crop yields for essential crops like wheat, corn, rice,
and soybean will only witness a modest rise of 38–67% [4]. It is evident that global
climatic changes, including escalating droughts, floods, and harmful micro-organisms,
will adversely impact agricultural productivity [5,6]. Biologic stress on plants alone is
anticipated to cause yield losses exceeding 40%, resulting in a 15% decline in the overall
global food supply [7–9]. To address these challenges, pesticides, fertilizers, and other
chemicals have been extensively used in recent years to enhance agricultural yield, promote
plant health, and combat plant infections. However, the use of such chemicals poses
significant threats to the environment, causing damage to soil, water, and vegetation.
Additionally, they indirectly affect animals such as birds, fish, beneficial insects, and non-
target plants [9–14].

Plant genomes have been modified using traditional plant breeding techniques or
through physical (such as gamma radiation), chemical (such as ethyl methanesulfonate,
EMS), and the biological (including T-DNA and transposon insertion) methods, resulting
in point mutations, deletions, and gene duplications. While these approaches have led to
crop improvement, they are time consuming, expensive, and often face challenges related
to conventional breeding. Moreover, they can cause unintended rearrangements in the
genome. Therefore, it is crucial to enhance the development of high-yielding crops that are
disease-free and tolerant to abiotic stresses, enabling them to adapt to future challenges.
Recognizing these challenges, the scientific community has long been committed to cul-
tivating ideal crops. Genetically modified (GM) crops have been created by transferring
beneficial genes to crops through a trans-kingdom approach. Consequently, scientists have
directed their efforts toward developing genome-editing tools that can modify the genome
without introducing transgenes [2,15–17].

The era of genome editing began with the introduction of zinc finger nucleases (ZFNs)
and transcription activator-like effector nucleases (TALENs), though it reached new heights
following the discovery of CRISPR/Cas technology. The development of CRISPR/Cas9
(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated nucle-
ase 9) has revolutionized genome editing in plants, enabling significant advancements
beyond the outcomes that conventional breeding techniques can achieve [18]. The type
II CRISPR/Cas9 system, which was initially found in Streptococcus pyogenes, has become
the most widely adopted and extensively utilized system [19–21]. The importance of
genome-engineering technologies in modern plant development and improvement cannot
be overstated. The field of genome engineering has undergone a transformative revolution,
which was largely driven by the development and widespread acceptance of CRISPR,
which is recognized as one of the most potent gene-editing techniques available [22,23].
The CRISPR system functions by incorporating sequences from foreign elements into a
small RNA-based memory, which serves as an inherited resistance mechanism. These short
RNAs recognize the foreign invader and employ Cas proteins, which act as enzymatic
units, to cut and eliminate the invader’s genetic material. In many aspects, the CRISPR
system bears resemblance to the RNA-based defense mechanisms found in animal germ
cells, which protect against mobile genetic material [24]. The CRISPR-Cas9 system has been
simplified into two key components: a single chimeric RNA known as guide RNA (gRNA)
and the enzyme Cas9. Together, these elements enable the editing of specific genomes and
facilitate desired modifications in genome engineering [19]. The gRNA consists of CRISPR
RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA) sequences, which guide
the sequence-specific cleavage of genomic DNA by Cas9 through a straightforward base-
pairing process. Notably, gRNAs can be easily designed to recognize a target sequence of
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20 nucleotides in length and induce precise Cas9-dependent cleavage of both DNA strands
at a pre-defined location within the target, underscoring the utility of this technology.

The development of genome-edited plants using CRISPR/Cas9 technology consists
of five steps: (i) selection of the target gene, (ii) designing a targeted gene-specific sgRNA,
(iii) assembling Cas9 and sgRNA, (iv) transformation to the target plant, and (v) regenera-
tion and screening of plant lines (see Figure 1). Here, we describe the usage and benefits of
CRISPR genome-editing technology for developing plant lines that are resistant to disease
and abiotic stress and provide examples of genes edited to enable crop improvement.
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2. Genome Editing Tools and Their Comparison

Genome editing techniques rely on three main sequence-specific nuclease systems:
zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and
the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein
(CRISPR/Cas). Mega-nucleases, such as ZFNs and TALENs, have recently enabled the tar-
geted modification of specific genome sequences [25,26]. Until 2013, ZFNs were the most
commonly used genome editing technique, followed by TALENs [27,28]. These methods
involve engineered fusion proteins, in which a DNA binding domain is fused to the non-
specific nuclease domain of the restriction enzyme FokI. They have been successfully applied
in various species, including plants [29,30]. However, ZFNs and TALENs face challenges
as they require the introduction of a new protein after target verification, making their ap-
plication more complex [9]. Consequently, these methods have not been widely adopted in
plant genome editing, prompting scientists to explore alternative approaches [31,32]. Un-
like ZFNs and TALENs, which require specific proteins and sequences, the CRISPR/Cas
system only requires a guide RNA (gRNA), which offers a significant advantage (refer to
Table 1). The CRISPR/Cas system has emerged as a superior gene-editing technique due to
its simplified requirements. In the ZFN and TALEN systems, the restriction endonuclease
FokI contains a catalytic domain that generates double-strand breaks with sticky ends of
varying lengths, which depend on the linker and spacer used. On the other hand, the Cas9
system of CRISPR/Cas comprises two cut site—RuvC and HNH—that generate blunt ends
by cleaving the target DNA three nucleotides upstream of the protospacer adjacent motif
(PAM) [19]. The CRISPR target site requires a 3-base pair protospacer adjacent motif (PAM)
situated at the 3′ NGG end of the 20-nucleotide recognition sequence. When the Cas9 enzyme
generates double-strand breaks (DSBs), initiating the DNA repair mechanism, two biological
mechanisms can be employed for genome editing. The first mechanism—non-homologous
end joining (NHEJ)—is an error-prone process that leads to small insertions and deletions,
compromising the functionality of the cut sites. The second approach is homology-directed
repair (HDR), which utilizes templates created via homologous DNA sequences for repair
purposes. This repair mechanism can be harnessed to precisely modify the genome or intro-
duce foreign DNA using an externally constructed template donor [33]. The CRISPR/Cas9
method overcomes challenges associated with complex construction of DNA-binding domain
expression cassettes, reduced target sensitivity, and lower cutting efficiency encountered in
ZFN and TALEN gene-editing technologies. Furthermore, the CRISPR/Cas9 system is easier
and more practical to implement [34,35]. In contrast, gRNA-guided cutting in the CRISPR/Cas
system relies on a simple base-pairing mechanism, eliminating the need for complex and labor-
intensive protein engineering for each target. Instead, a 20-nucleotide gRNA sequence can be
designed to specifically recognize and bind to the desired target DNA sequence [3]. However,



Biology 2023, 12, 1037 4 of 28

it should be noted that the CRISPR/Cas system’s requirement for a protospacer adjacent
motif (PAM) at the target recognition site may impose limitations on its applicability in certain
gene-editing scenarios [36]. In light of the potential drawbacks of a PAM-free nuclease, there
are several avenues along which this field can proceed. One approach is to focus on other Cas
nucleases, such as Cas9, Cas12a, and remaining Cas nucleases, which still have room to relax
PAM recognition without completely eliminating it. By combining ortholog mining and PAM
engineering, researchers can expedite the development of these nucleases. The abundance
of characterized Cas9 nucleases suggests that there is a wide diversity of PAM sequences in
nature that has yet to be fully explored. For example, Type V-C nucleases recognize PAMs with
as little as a single base, making them promising candidates for PAM relaxation. Determining
the structures of nucleases that naturally recognize only one nucleotide could reveal new
insights into PAM recognition and guide future engineering efforts [37]. Type I CRISPR-Cas10
is a CRISPR system that has been shown to induce small insertions and deletions (indels),
as well as bi-directional long-range deletions, in tomatoes (Solanum lycopersicum L.). This
system allows precise modifications in the tomato genome, with deletions spanning up to
7.2 kb in length. This capability creates the potential for targeted genetic modifications and
the development of improved tomato varieties. On the other hand, Type IV CRISPR-Cas13
is a distinct CRISPR system that targets RNA instead of double-stranded DNA. This unique
feature enables highly specific knockdown of target genes at the RNA level. By utilizing
the RNA-targeting capability of Cas13, researchers can achieve precise regulation of gene
expression and potentially develop novel approaches for various applications.

Table 1. Specifications of genome editing (GE) tools.

Genome
Editing Tools

Target Site
(bp) Off Targeting Enzyme DNA Binding

Mediator
Binding
Specifity

DNA
Cleavage Usage Origin

CRISPR/Cas9 20 Variable Cas9 crRNA/
sgRNA

1:1 nucleotide
pairing

RNA-
dependent Easy Bacteria/Archaea

ZFNs 18–36 High FokI Zinc-finger
protein 3 nucleotides Protein-

dependent
Highly
difficult Eukaryotes

TALENs 30–40 Low FokI
Transcription
activator-like

effector
1 nucleotide Protein-

dependent Difficult Bacteria

Both Type I CRISPR-Cas10 and Type IV CRISPR-Cas13 demonstrate the versatility and
potential of CRISPR technologies for precise genome editing and gene regulation in different
organisms, including important crops, such as tomatoes. These advancements open up
new possibilities for crop improvement and functional genomics [38–40]. In the field of
genome engineering in plants, CRISPR activation systems have significantly advanced the
capabilities of targeted mutagenesis, base editing, and gene activation. However, these tools
are typically used independently, limiting their potential for combined applications. To
address this limitation, researchers developed a versatile platform called CRISPR-Combo,
which utilizes a single Cas9 protein to enable simultaneous genome editing and gene
activation in plants [41]. The CRISPR-Combo platform offers powerful applications to
enhance plant genome editing. Firstly, they demonstrate its utility in shortening the plant
life cycle and simplifying the screening process for transgene-free genome-edited plants.
This outcome is achieved by activating a florigen gene in Arabidopsis, leading to accelerated
flowering and seed production. By activating morphogenic genes in poplar, they achieve
accelerated plant regeneration and propagation, reducing the time and effort required
to generate a large number of edited plants. This novel approach allows the efficient
enrichment of heritable targeted mutations, providing a valuable tool for crop breeding.
In summary, CRISPR-Combo represents a versatile genome engineering tool that has
promising applications in crop breeding [41].
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3. Arise of CRISPR/Cas9 Technology

In 1987, the CRISPR/Cas system was discovered in prokaryotes and found to be
an adaptive immune system that defends against invading bacteriophages or plasmids.
Researchers studying Escherichia coli identified approximately 32 nucleotide non-repeat
sequences and tandem repeats downstream of the iap gene. These tandem repeats were later
named CRISPR in the year 2000 [42,43]. Studies revealed that the CRISPR spacer sequences
showed similarity to sequences from exogenous sources, such as bacterial plasmids and
phages. When a bacteriophage infects a bacterium, the endogenous CRISPR system repli-
cates the repeat regions of the phage genome, which are then separated from the protospacer
adjacent motif (PAM) through spacer sequences [44–46]. The bacterium’s CRISPR/Cas
system detects the viral genome and neutralizes it during subsequent phage attacks, func-
tioning as the bacterium’s immune system. The Cas library in the bacterium preserves a
record of the invading viral sequences and aids in their destruction upon re-attack.

In traditional crop improvement methods, mutation breeding methods are often
employed using chemicals like ethyl methanesulfonate (EMS) or gamma radiation [47].
However, the CRISPR/Cas9 system offers the ability to modify single or multiple target
genes. Cas9, which is the enzyme from the type II CRISPR-Cas system of S. pyogenes, is a
large monomeric DNA nuclease. It is guided by two non-coding RNA complexes—CRISPR
RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA)—that cleave the DNA target
region next to the PAM sequence motif [19,48,49]. Cas9 possesses two nuclease domains
that are similar to the RuvC and HNH nucleases of the Cas9 protein (Figure 2).
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Figure 2. RNA-guided cleavage by the Cas9 protein.

Indeed, the Cas9 protein, due to its HNH and RuvC-like nuclease domains, is respon-
sible for cleaving the DNA target site. The HNH domain cleaves the complementary DNA
strand, while the RuvC-like domain cleaves the non-complementary strand, resulting in a
blunt cut in the target DNA [19]. When the Cas9 protein is combined with a single guide
RNA (sgRNA) and targeted to a specific genomic site, it induces site-specific double-strand
breaks (DSBs) in the DNA of living cells across various organisms. Following the genera-
tion of DSBs, different intracellular repair mechanisms come into play, leading to various
genome modifications. The two primary repair pathways are non-homologous end-joining
(NHEJ) and homology-directed repair (HDR) in nature. NHEJ is an error-prone repair
mechanism that often results in random insertions and deletions (indels) at the target gene
site. These indels can disrupt the functioning of the gene, leading to gene knockout or
loss-of-function mutations. On the other hand, HDR relies on the use of a template, which
is typically a homologous DNA sequence, to repair the DSB with high precision. This repair
pathway can be utilized to introduce desired modifications or specific DNA sequences into
the genome. It is important to note that the repair outcome depends on the specific repair
mechanisms of the organism and the factors influencing repair pathway choice. NHEJ is
the predominant pathway in many organisms, while HDR is typically less efficient but can
be enhanced by optimizing the experimental conditions.

Base editing and prime editing are two recent advancements in CRISPR/Cas technol-
ogy that have revolutionized the field of genome editing. These techniques offer the ability
to induce precise point mutations in the DNA without the need to induce double-strand
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breaks (DSBs), which can lead to unintended mutations. Base editing encompasses two
main types of editor: cytosine base editors (CBEs) and adenine base editors (ABEs). CBEs
utilize a modified Cas9 protein fused with an enzyme that is capable of chemically modify-
ing cytosine to induce specific nucleotide changes. This process allows targeted conversion
of cytosine into thymine (C-to-T) or guanine (C-to-G) mutations, depending on the desired
outcome. On the other hand, ABEs utilize a modified Cas9 protein fused with an enzyme
that can convert adenine to inosine, which is then recognized as guanine during DNA
replication. This process enables the induction of adenine to guanine (A-to-G) mutations.
Prime editing is a more advanced genome editing technique that expands the scope of
modifications that can be achieved. It combines a modified Cas9 protein with a reverse
transcriptase enzyme and a prime-editing guide RNA (pegRNA). The pegRNA contains
the desired edits in the form of a template, which is reverse transcribed and integrated into
the target DNA site, allowing precise changes in the DNA sequence. Prime editing enables
a broader range of modifications, including transitions, transversions, insertions, and dele-
tions, providing greater flexibility in genome engineering. These advancements in base
editing and prime editing have greatly expanded the toolbox of CRISPR/Cas technology,
allowing more precise and versatile genome modifications. They offer exciting possibil-
ities for targeted genetic changes and the development of improved crops [50]. Recent
studies have highlighted the significance of utilizing endogenous RNA Pol III promoters,
specifically U3 and U6 promoters, in the CRISPR/Cas9 system to enhance genome editing
efficiency in various plant systems. These promoters are responsible for transcribing single
or multiple guide RNAs that guide the Cas9 nuclease to target specific genomic regions.
By utilizing endogenous RNA Pol III promoters, researchers have observed improved
editing efficiency and precision in plant genome editing. The use of species-specific U3/U6
promoters holds promise in terms of advancing the field of genome editing by enabling
more specific and efficient targeting of desired genomic sequences [51].

4. CRISPR/Cas-Mediated Genome Editing for Disease Resistance

Plant diseases caused by biotic factors, such as viruses, fungi, oomycetes, and bacteria,
pose a significant threat to crop productivity and global food security. These infections result
in substantial yield losses and quality reduction in field crops, fruits, and other edible plant
materials. Approximately 20 to 40% of worldwide crop losses are attributed to biotic fac-
tors [52]. Traditionally, plant disease resistance has been achieved through the introgression of
resistance genes (R-genes) from wild relatives of the cultivated crop. The most common type
of resistance mechanism involves nucleotide-binding leucine-rich repeat (NB-LRR) proteins,
which recognize specific products of pathogen Avirulence (Avr) genes [53]. Upon recognition, a
defensive response is triggered, leading to the host cell’s programmed cell death; this process is
known as the hypersensitive reaction (HR) [53]. Another approach to disease resistance is the
suppression of susceptibility (S) genes, which are essential for pathogen infection [54]. Many
pathogens rely on specific host genes for successful infection and proliferation. Biotrophic
fungal pathogens, such as powdery mildews, require prolonged interaction with host cells to
achieve effective proliferation [55]. The expression of specific host genes, known as S-genes
or susceptibility genes, is necessary for pathogen recognition, penetration, evasion of host
defenses, and fulfillment of the pathogen’s metabolic and structural needs [55]. Mutations
in S-genes can result in long-term and broad-spectrum recessive heritable resistance [56,57].
Therefore, S-genes play a critical role in plant–pathogen interactions, influencing the host’s sus-
ceptibility to infection. The functions of S-genes can be categorized into three major molecular
mechanisms: basic compatibility, sustained compatibility, and negative modulation of plant
immune signals. Basic compatibility involves host recognition and pathogen penetration, sus-
tained compatibility is necessary for pathogen proliferation and dissemination, and negative
modulation of plant immune signals helps to suppress host defense responses [55]. Under-
standing the molecular mechanisms that underlie S-gene functions and their interactions
with pathogens is crucial to the development of effective strategies that enhance plant disease
resistance. The barley Mlo (mildew resistance locus) gene is a well-known example of an S-gene
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mutation that confers resistance to powdery mildew in barley. Deployment of loss-of-function
Mlo alleles in barley has resulted in the development of powdery mildew-resistant barley vari-
eties. These resistant plants have been cultivated in the field for many years, demonstrating
the durability of S-gene-based resistance against virulent powdery mildew strains [58]. The
cloning of the barley Mlo gene revealed that it is conserved across the plant kingdom and
exists as a multi-copy gene family in higher plants [59–61]. Studies have shown that mutation
of the Mlo gene confers resistance to powdery mildew. The Mlo protein is essential for the
penetration of powdery mildew fungal spores into host epidermal cells. The Mlo gene encodes
a membrane-associated protein with seven transmembrane domains, and its mutation, which
uses the CRISPR-Cas9 system, has resulted in the generation of transgene-free and powdery
mildew-resistant plants [62–64]. Mlo-like genes have also been implicated in powdery mildew
susceptibility in various plant species, including Arabidopsis, tomato, pea, pepper, tobacco,
bread wheat, and potentially grapevine and peach [63,65–70]. These genes are categorized
into different classes based on their phylogenetic relationships. Class IV contains Mlo-like
genes associated with powdery mildew susceptibility in monocotyledonous species, while
class V contains those found in dicotyledonous species. Other classes (I, II, III, and VI) include
Mlo-like genes that have not yet been identified as S-genes [61]. The development of next-
generation sequencing and CRISPR technologies has facilitated the identification and targeting
of S-genes involved in the enhancement of disease resistance in plants. CRISPR/Cas9 has been
used to target S-genes, including the Mlo gene, to confer protection against important plant
pathogens. Modifying these S-genes can disrupt the compatibility between the host and the
pathogen, leading to broad-spectrum and durable disease resistance [71]. Another example is
the targeting and alteration of the Enhanced Disease Resistance 1 (EDR1) gene, resulting in
a significant decrease in powdery mildew in wheat [35]. One of the notable advantages of
CRISPR/Cas9 technology is its ability to target multiple genes simultaneously using a single
construct. Studies have shown that a single molecular structure in Arabidopsis can simulta-
neously induce mutations in 14 different genes [72]. Multiplex genome-editing techniques,
through which multiple guide RNAs (gRNAs) are integrated into a single construct under
the control of a U3 or U6 promoter, have been successfully applied in crops [73–77]. Previous
methods for transgene removal involved either molecular excision or segregation via selfing
or backcrossing to the original parent line. The Cas9 system allows transgene-free lines to
be selected from segregating populations once a successful mutation in the target genomic
region is confirmed [71,78,79].

Viruses pose a significant biotic stress risk to plants and can cause diseases in various
commercially important crops. The Eukaryotic Translation Initiation Factor 4E (eIF4E) is a
key protein required for the infection cycle of Potyviridae family viruses, which are single-
stranded positive-sense RNA viruses. The viral protein genome-linked (VPg) element at
the 5′-terminal of potyviruses interacts with eIF4E, and disrupting this interaction has been
shown to confer immunity against potyviruses in different plant species [80]. Using CRISPR-
Cas9 technology, researchers have successfully disrupted eIF4E genes to generate resistance
against potyviruses and ipomoviruses in Arabidopsis and Cucumis sativus (cucumber) in
independent studies [18,78]. Importantly, these genome-edited plants did not contain
transgenes, demonstrating the potential of CRISPR technology to produce virus-resistant
crops without the need to introduce foreign DNA [18,78].

In addition to viral infections, CRISPR-Cas systems are being investigated regarding
their potential role in combating bacterial infections in agriculture. One example is citrus
canker, which is a devastating disease caused by Xanthomonas citri subsp. citri, which leads
to significant yield losses in citrus production worldwide [81]. The CRISPR/Cas9 method
has been employed to modify the OsSWEET13 gene, resulting in resistance to bacterial blight
caused in rice by the γ-proteobacterium Xanthomonas oryzae pv. oryzae [82]. OsSWEET13 is an
S-gene that encodes a sucrose transporter involved in plant–pathogen interactions [73]. Table 2
provides examples of CRISPR-mediated editing of S-genes to generate disease-resistant crops.
These studies highlight the potential of CRISPR technologies in addressing various plant
diseases caused by viral and bacterial infections.
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Table 2. Genes targeted by CRISPR-based genome editing techniques for imparting resistance against diseases.

Host Plant Pathogen Disease Targeted Gene Delivery Method Transgene-Free Result References

Apple Erwinia amylovora Fire blight DIPM-1, DIPM-2 and
DIPM-4

Agrobacterium-mediated
transformation Yes Enhanced disease

resistance [83]

Arabidopsis

Oidium neolycopersici Powdery mildew PMR4 Agrobacterium-mediated
transformation No Enhanced disease

resistance [84]

Beet Severe Curly Top
Virus (BSCTV)

DNA viral
disease IR, CP, Rep Agrobacterium-mediated

transformation No Geminivirus-resistant
plants [85]

Turnip Mosaic
Virus (TuMV)

RNA viral
disease Elf(iso)4E Agrobacterium-mediated

transformation Yes Potyvirus-resistant
plants [78]

Banana Banana Streak
Virus (BSV)

DNA viral
disease eBSV Agrobacterium-mediated

transformation Not defined
Inactivation of
eBSV caused

asymptomatic plants
[86]

Barley Wheat Dwarf
Virus (WDV)

DNA viral
disease MP, CP, Rep/Rep, IR Agrobacterium-mediated

transformation No
No disease

symptoms and
virus presence

[87]

Cacao Phytophthora tropicalis Black pod rot TcNPR3 Agrobacterium-mediated
transformation No Enhanced disease

resistance [88]

Citrus

Xanthomonas citri subsp.
citri Citrus canker CsLOB1 Agrobacterium-mediated

transformation No Enhanced disease
resistance [89]

X. citri subsp. citri Citrus canker CsLOB1/promoter Agrobacterium-mediated
transformation No Enhanced disease

resistance [90]

Cucumber

Cucumber Vein
Yellowing Virus (CVYV),
Zucchini Yellow Mosaic

Virus (ZYMV), and
Papaya Ring Spot Mosaic

Virus-W (PRSV-W)

RNA viral
disease elf4E Agrobacterium-mediated

transformation Yes Resistance to viruses [18]
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Table 2. Cont.

Host Plant Pathogen Disease Targeted Gene Delivery Method Transgene-Free Result References

Grapevine

Erysiphe necator Powdery mildew Mlo-7

Polyethylene
glycol-mediated (PEG)

protoplast
transformation

Yes Enhanced disease
resistance [83]

Botrytis cinerea Gray mold VvWRKY52 Agrobacterium-mediated
transformation No Enhanced disease

resistance [91]

Papaya P. palmivora Root, stem, and
fruit rot alEPIC8 Agrobacterium-mediated

transformation Not defined Enhanced disease
resistance [92]

Rice

X. oryzae pv. Oryzae Bacterial Blight
SWEET11,

SWEET13 and
SWEET14/promoter

Agrobacterium-mediated
transformation Not defined

Enhanced
broad-spectrum disease

resistance
[93]

X. oryzae pv. Oryzae Bacterial Blight Os8N3/promoter Agrobacterium-mediated
transformation Yes Enhanced disease

resistance [94]

X. oryzae pv. Oryzae Bacterial Blight OsSWEET11 and
OsSWEET14/promoter

Agrobacterium-mediated
transformation No

Enhanced
broad-spectrum disease

resistance
[95]

X. oryzae pv. Oryzae Bacterial Blight
and Rice Blast Xa13 Not defined Yes Enhanced disease

resistance [96]

X. oryzae pv. Oryzae Bacterial Blight OsSWEET13 Agrobacterium-mediated
transformation No Enhanced disease

resistance [82]

Magnaporthe oryzae Rice blast OsERF922 Agrobacterium-mediated
transformation Yes Enhanced disease

resistance [97]

M. oryzae Rice blast TMS5, Pi21, and Xa13 Not defined Yes Enhanced disease
resistance [96]

M. grisea Rice blast OsMPK5 Protoplast
transformation No Resistance not confirmed [98]

Rice tungro
bacilliform virus

Rice tungro
disease eIF4G Agrobacterium-mediated

transformation Yes Enhanced disease
resistance [99]
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Table 2. Cont.

Host Plant Pathogen Disease Targeted Gene Delivery Method Transgene-Free Result References

Tobacco

Cotton Leaf Curl Multan
Virus (CLCuMuV)

DNA viral
disease IR and C1 Agrobacterium-mediated

transformation No Complete resistance to
virus infection [100]

Tomato Yellow
Leaf Curly Virus

(TYLCV), Beet Curly
Top Virus (BCTV), and

Merremia Mosaic
Virus (MeMV)

DNA viral
disease IR, CP, RCRII Agrobacterium-mediated

transformation No

No disease
symptoms and
reduced virus
accumulation

[101]

Bean Yellow Dwarf
Virus (BeYDV)

DNA viral
disease LIR, Rep Agrobacterium-mediated

transformation No Reduced symptoms and
virus load [102]

Beet Severe Curly Top
Virus (BSCTV)

DNA viral
disease IR, CP, Rep Agrobacterium-mediated

transformation No Geminivirus-resistant
plants [85]

Tomato Yellow Leaf Curl
Virus (TYLCV)

DNA viral
disease CP, Rep Agrobacterium-mediated

transformation No Enhanced disease
resistance [103]

Tomato

Pseudomonas syringae Bacterial speck SIDMR6–1 Agrobacterium-mediated
transformation No Enhanced disease

resistance [104]

P. capsici Phytophthora
blight SIDMR6–1 Agrobacterium-mediated

transformation No Enhanced disease
resistance [104]

Xanthomonas spp. Bacterial spot SIDMR6–1 Agrobacterium-mediated
transformation No Enhanced disease

resistance [104]

P. syringae pv. tomato
(Pto) DC3000 Bacterial speck SlJAZ2 Agrobacterium-mediated

transformation Not defined
Enhanced disease

resistance and
defence trade-off solved

[105]

O. neolycopersici Powdery mildew SlMlo1 Agrobacterium-mediated
transformation No Enhanced disease

resistance [64]

O. neolycopersici Powdery mildew SIPMR4 Agrobacterium-mediated
transformation No Enhanced disease

resistance [84]

Fusarium oxysporum f. sp.
lycopersici Fusarium wilt Solyc08g075770 Agrobacterium-mediated

transformation No Enhanced disease
susceptibility [106]
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Table 2. Cont.

Host Plant Pathogen Disease Targeted Gene Delivery Method Transgene-Free Result References

Tomato

B. cinerea Gray mold SlMAPK3 Agrobacterium-mediated
transformation No Enhanced disease

susceptibility [107]

PVX, TMV RNA viral
disease DCL2 Agrobacterium-mediated

transformation No Resistance to
PVX and TMV [108]

Tomato Yellow Leaf Curl
Virus (TYLCV)

DNA viral
disease CP, Rep Agrobacterium-mediated

transformation No Enhanced disease
resistance [103]

Wheat

Blumeria graminis f. sp.
tritici Powdery mildew TaMlo Protoplast and Biolistic

transformation Yes Enhanced disease
resistance [63]

B. graminis f. sp. tritici Powdery mildew TaEDR1 Biolistic transformation No Enhanced disease
resistance [35]
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5. CRISPR/Cas-Mediated Genome Editing for Abiotic Stress Tolerance

Abiotic stresses, such as drought, heat, cold, and salt stress, pose significant challenges
to crop production worldwide. Plants have evolved complex mechanisms that allow
them to tolerate and respond to these stresses, which involve cellular and transcriptional
regulation. Severe stress conditions can lead to membrane damage, cellular injury, and
visible symptoms of necrosis in plants [109]. The advent of genome-editing technologies has
provided opportunities for researchers to explore the tolerance mechanisms and develop
novel traits for abiotic stress resistance. Abiotic stress tolerance is a complex trait controlled
by multiple genes, making it challenging to manipulate through traditional breeding
methods alone [110]. Numerous regulatory and structural genes are involved in abiotic
stress responses. By focusing on “Tolerance (T) genes” that exhibit positive regulatory
responses to stress, researchers can enhance stress tolerance through approaches such as
gene overexpression, modification of promoter elements, modification of upstream Open
Reading Frames (uORFs), or CRISPR activation [111]. Conversely, “Sensitive genes (S)” that
are involved in stress susceptibility can also be targeted to study abiotic stress resistance.
CRISPR-mediated knockout studies of S-genes have generated plants with enhanced
resistance to abiotic stresses [112]. By disrupting these genes, researchers can uncover
their functions in stress sensitivity and potentially develop crops with improved stress
tolerance. The use of CRISPR technology enables precise and targeted modifications of
specific genes involved in abiotic stress responses. By manipulating T-genes or disrupting
S-genes, researchers can gain insights into the underlying mechanisms of stress tolerance
and develop crop varieties that have enhanced resilience to abiotic stresses.

5.1. Drought Tolerance

Water scarcity and drought stress have become significant global challenges that
affect both developing and developed countries. With the increasing impact of global
warming, water evaporation from the Earth has intensified, leading to drought stress
in plants. Drought stress has adverse effects on plant morphology and biochemistry,
resulting in significant crop losses [113,114]. The CRISPR/Cas gene-editing technology
has been employed to enhance drought tolerance in various plant species. By targeting
specific genes involved in drought-response pathways, researchers have successfully
improved the drought tolerance of crops. Here are some examples: Dehydration responsive
element binding 2 (TaDREB2) and Ethylene responsive factor 3 (TaERF3) were previously
edited using CRISPR/Cas in wheat, resulting in enhanced drought tolerance [115]. A
loss-of-function mutation of the SAPK2 gene through CRISPR/Cas editing has improved
drought tolerance in Oryza sativa (rice) by affecting ABA signaling, where SAPK2 acts
as a primary mediator [116]. CRISPR/Cas9-mediated editing of the SLNPR1 gene in
tomato led to enhanced drought tolerance, as evidenced by improved leaf retention
under drought stress [117]. The OsDST gene edited using CRISPR/Cas in an O. sativa
cultivar MTU1010 improved drought and salt tolerance by promoting leaf retention
under drought stress conditions [118,119]. Editing of the OsERF109 gene using the
CRISPR/Cas system increased abiotic stress tolerance in O. sativa cultivars [120]. Sev-
eral ERF family members, including OsBIERF1, OsBIERF3, and OsBIERF4, were edited
using CRISPR/Cas in O. sativa, resulting in enhanced abiotic stress tolerance [97]. In
maize, CRISPR/Cas9-mediated editing of the ethylene response factor ARGOS8 im-
proved drought tolerance [121]. Knock-out of the ZmWRKY40 gene in Zea mays (maize)
using CRISPR/Cas technology led to increased tolerance of drought stress [122]. In
tomato, CRISPR/Cas knock-out of the Mitogen-Activated Protein Kinase 3 (SlMAPK3) gene
resulted in drought tolerance, which was characterized by increased levels of malondi-
aldehyde, proline, and H2O2 in the mutant lines [123]. Knock-out of the SlNPR1 gene
using CRISPR/Cas9 in tomato reduced drought resistance and down-regulated drought-
related genes [117]. These examples highlight the potential of CRISPR/Cas gene editing
in improving drought tolerance in various crop species by targeting the specific genes
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involved in drought-response pathways. By modifying these genes, researchers aimed
to enhance the ability of plants to withstand drought stress and minimize crop losses.

5.2. Salt Tolerance

Salt stress can have detrimental effects on plant cells, ranging from ion disturbances to
necrosis [124]. It triggers various cellular changes, including the production of secondary
signal molecules (such as ROS), synthesis of abscisic acid (ABA), alterations in calcium
levels and calcium/calmodulin-dependent kinase activation, and the activation of salt
overly sensitive (SOS) homeostatic signaling pathways [124]. The CRISPR/Cas gene edit-
ing system has been employed to enhance salt stress resistance in several genes. Here
are some examples: OsBBS1 (Bilateral Blade Senescence 1) and OsMIR528 (microRNA528)
were identified as positive regulators of salt stress and early leaf senescence in O. sativa
(rice), respectively. CRISPR/Cas-based targeted mutations in these genes improved salt
tolerance in rice [118,125]. Inducing the expression level of the OsRAV2 (related to
ABI3/VP1 2 gene) gene through CRISPR/Cas-based targeted mutations enhanced salt
tolerance in O. sativa [126]. Loss-of-function mutations of the SnRK2 (SNF1-related protein
kinase 2) and SAPK-1 and SAPK-2 (Osmotic Stress/ABA-Activated Protein Kinases) genes
using CRISPR in rice resulted in increased salinity resistance [126]. Knockout of the
SlMAPK3 (Mitogen-Activated Protein Kinases 3) gene in tomato led to decreased expression
levels of SlLOX (Lipoxygenases), SlGST (Glutathione S-transferase), and SlDREB (Dehydration-
Responsive Element-Binding ) genes, resulting in improved salt tolerance [123]. Overexpres-
sion of GmMYB118 (transcription factors) using CRISPR approaches enhanced drought and
salt tolerance in soybeans and Arabidopsis [127]. Editing of the SAPK1 and SAPK2 genes
in O. sativa increased salt stress tolerance [128]. Knockout of the SlARF4 (Auxin Response
Factors 4) gene, which negatively regulates salt tolerance and osmotic stress, improved
salt tolerance in tomato [129]. In Arabidopsis, knockout of the AtC/VIF1 (Cell Wall/Vacuolar
Inhibitor) gene, which affects ABA response, conferred salt tolerance [130]. In O. sativa,
knockout of the OsDST (Drought and Salt Tolerance) gene, which affects stomata density
and leaf thickness, resulted in increased drought and salt tolerance [119]. These examples
demonstrate the application of CRISPR/Cas gene editing to the improvement of salt stress
tolerance in various plant species by targeting specific genes involved in salt stress response
pathways. By manipulating these genes, researchers aim to enhance plants’ ability to cope
with salt stress and improve their overall salt tolerance.

5.3. Cold Tolerance

The C-repeat Binding Factor 1 (CBF1) plays a crucial role in protecting plants from
cold/chilling injury and preventing electrolyte leakage [131]. Mutant tomato lines with
altered CBF1 expression exhibited increased accumulation of hydrogen peroxide and
indole acetic acid, which contributed to enhanced cold tolerance [131]. Annexin (OsANN3),
which is a gene that encodes a calcium-dependent phospholipid binding protein, has been
identified as a contributor to cold stress tolerance in rice. CRISPR/Cas9 editing of the
OsANN3 gene resulted in increased relative electrical conductivity and improved cold
tolerance [132]. The Stress/ABA-Activated Protein Kinase 2 (SAPK2) gene-edited rice, which
was generated using CRISPR/Cas9, showed resistance to cold stress [116]. In O. sativa
(rice), the OsMYB30 mutant created through CRISPR/Cas gene editing exhibited enhanced
cold tolerance, with an efficiency of approximately 63% [133]. These studies demonstrate
the potential of CRISPR/Cas gene editing in improving cold stress tolerance in plants by
targeting genes such as CBF1, OsANN3, SAPK2, and OsMYB30. Manipulating these genes
can enhance plants’ ability to withstand low temperature conditions and minimize the
damage caused by cold stress.
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5.4. Heat Tolerance

Heat stress triggers various responses in plants, including alterations to heat shock
proteins, enzymes involved in reactive oxygen species (ROS) synthesis, and genes that
encode scavenger proteins [134]. Through CRISPR/Cas gene editing, several heat
stress-related genes have been targeted to understand their roles in heat tolerance and
improve thermotolerance in plants. Deletion mutants of Heat Stress-Sensitive Albino
1 (HSA1) generated using CRISPR/Cas exhibited increased sensitivity to heat stress
compared to wild-type tomato plants, indicating the involvement of HSA1 in heat
tolerance [135]. In tomato, thermotolerance was achieved by editing BZR1 (Brassinazole-
Resistant 1) expression using CRISPR technology. Mutant BZR1 tomato lines displayed
impaired hydrogen peroxide (H2O2) production in the apoplast and a reduction in the
stimulation of Respiratory Burst Oxidase Homolog 1 (RBOH1), indicating the importance
of BZR1 in influencing heat stress response [136]. CRISPR/Cas-mediated editing of
the Agamous-Like 6 (AGL6) gene in tomato resulted in the development of heat-tolerant
plants that exhibited parthenocarpic fruit formation [137]. In maize, the mutation of
the Thermosensitive Genic Male Sterile 5 (TGMS5) gene using CRISPR/Cas technology
allowed the production of thermosensitive male sterile plants [138]. These examples
highlight the potential application of CRISPR/Cas gene editing to help us understand
the function of heat stress-related genes and develop heat-tolerant traits in plants. By
manipulating these genes, researchers aim to enhance the ability of plants to withstand
high-temperature conditions and minimize the negative effects of heat stress on crop
productivity. Table 3 provides further information about abiotic stress-related genes
editing performed using CRISPR/Cas technology.
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Table 3. Genes targeted using CRISPR-based genome editing techniques to impart tolerance of abiotic stress.

Abiotic Stresses Plant Species Targeted Gene Delivery Method Regulating Direction of
Response to Stress Function References

Drought

Oryza sativa OsNAC006 Agrobacterium -mediated
transformation Transcription factor [139]

Brassica napus BnaA6.RGA Agrobacterium-mediated
transformation Transcription factor [140]

O. sativa SRL1, SRL2 Agrobacterium-mediated
transformation Rolling of leaf [141]

O. sativa subsp. indica OsDST Agrobacterium-mediated
transformation

Drought and salt tolerance
(DST) gene [119]

O. sativa OsNAC14 Agrobacterium-mediated
transformation Transcription factor [142]

O. sativa OsSAPK2 Agrobacterium-mediated
transformation ABA signaling [116]

O. sativa OsMYB1, OsYSA, OsROC5, OsDERF1, OsPDS,
OsPMS3, OsEPSPS, OsMSH1, OsMYB5, OsSPP

Agrobacterium-mediated
transformation Amino acid synthesis [143]

Solanum lycopersicum L. SlNPR1 Agrobacterium-mediated
transformation Drought tolerance [117]

S. lycopersicum L. MAPK3 Agrobacterium-mediated
transformation Growth and development [123]

Triticum aestivum TaDREB2, TaERF3 PEG-mediated transformation Dehydration-responsive
element-binding protein [115]

Zea mays ARGOS8 Particle bombardment Ethylene-responsive gene
family regulator [121]

Arabidopsis thaliana AREB1 Agrobacterium-mediated
transformation ABA signaling [144]

A. thaliana AtAVP1, AtPAP1 Agrobacterium-mediated
transformation Transcription factor [145]

A. thaliana AtOST2 Agrobacterium-mediated
transformation Stomatal movement [146]



Biology 2023, 12, 1037 16 of 28

Table 3. Cont.

Abiotic Stresses Plant Species Targeted Gene Delivery Method Regulating Direction of
Response to Stress Function References

Drought

A. thaliana AtMIR169a, AtMIR827a, TFL1 Agrobacterium-mediated
transformation

Negative factor of
drought tolerance [147]

Glycine max GmMYB118 Agrobacterium-mediated
transformation Transcription factor [127]

Populus clone NE-19 PdNF-YB21 Agrobacterium-mediated leaf
disc method

Transcription factor ABA-mediated
indoylacetic acid transport [148]

Cold

O. sativa OsMYB30, OsPIN5b, GS3 Agrobacterium-mediated
transformation Cold tolerance [133]

A. thaliana UGT79B2, UGT79B3 Agrobacterium-mediated
transformation UDP-glycosyltransferases [149]

O. sativa subsp. indica OsPRP1 Agrobacterium-mediated
transformation Plant growth and stress response [150]

A. thaliana AtCBF2 Agrobacterium-mediated
transformation

Encodes AP2/ERF
(APETALA2/Ethylene-
Responsive Factor)-type

transcription factors)

[151]

A. thaliana AtCBF1, AtCBF2, AtCBF3 Agrobacterium-mediated
transformation

Encodes AP2/ERF
(APETALA2/Ethylene-
Responsive Factor)-type

transcription factors)

[147,152,153]

S. lycopersicum L. SlCBF1 Agrobacterium-mediated
transformation Transcription factor [131]

O. sativa OsAnn3 Agrobacterium-mediated
transformation

Plant development and protection
from environmental stresses [132]

A. thaliana CBFs Agrobacterium-mediated
transformation Transcription factor [154]
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Table 3. Cont.

Abiotic Stresses Plant Species Targeted Gene Delivery Method Regulating Direction of
Response to Stress Function References

Salinity

O. sativa OsGTg-2 Agrobacterium-mediated
transformation Transcription factor [155]

O. sativa PIL14 Agrobacterium-mediated
transformation Phytochrome-Interacting Factor [156]

O. sativa OstPQT3 Agrobacterium-mediated
transformation

E3 ubiquitin ligase (enhances
resistance to abiotic stresses) [157]

O. sativa OsAGO2 Agrobacterium-mediated
transformation

Transcriptional transactivator
(growth and development, stress

and defense responses, alternative
splicing, and DNA repair)

[158]

O. sativa OsDST Agrobacterium-mediated
transformation Zinc-finger transcription factor [119]

O. sativa FLN2 Agrobacterium-mediated
transformation

Sucrose metabolism
fructokinase-like protein2 [159]

O. sativa OsRR9 and OsRR10 Agrobacterium-mediated
transformation Cytokinin signaling [160]

O. sativa OsDOF15 Agrobacterium-mediated
transformation

Transcription factor (regulates cell
proliferation in the root) [161]

O. sativa OsSPL10 Agrobacterium-mediated
transformation Transcription factor [162]

O. sativa NCA1a, NCA1b Agrobacterium-mediated
transformation Regulation of catalase activity [163]

O. sativa RR22 Agrobacterium-mediated
transformation

Transcription factor (cytokinin
signal transduction and

metabolism)
[164]

O. sativa OsNAC041 Agrobacterium-mediated
transformation Transcription factor [165]

O. sativa OsOTS1 Agrobacterium-mediated
transformation Salt stress response regulation [166]
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Table 3. Cont.

Abiotic Stresses Plant Species Targeted Gene Delivery Method Regulating Direction of
Response to Stress Function References

Salinity

O. sativa OsSAPK1, OsSAPK2 Agrobacterium-mediated
transformation ABA pathway regulator [129]

O. sativa OsBBS1 Agrobacterium-mediated
transformation Receptor-like cytoplasmic kinase [167]

O. sativa OsMIR408, OsMIR528 Agrobacterium -mediated
transformation Salt stress response regulation [168]

O. sativa OsRAV2 Agrobacterium-mediated
transformation Transcription factor [126]

Z. mays HKT1 Agrobacterium-mediated
transformation

High-affinity potassium
transporter [169]

A. thaliana AtSAUR41 Agrobacterium-mediated
transformation Auxin response gene [170]

Cucurbita moschata RBOHD Agrobacterium-mediated
transformation

NADPH oxidase is a key member
for H2O2 production [171]

A. thaliana AtC/VIF1 Agrobacterium-mediated
transformation

Cell wall/vacuolar inhibitor of
fructosidases [130]

Hordeum vulgare HvITPK5/6 Agrobacterium-mediated
transformation

Sequential phosphorylation of
inositol phosphate to inositol

hexakisphosphate
[172]

G. max L. GmAITR Agrobacterium-mediated
transformation

Transcription factors that are
involved in the regulation of ABA

signaling
[173]

S. lycopersicum L. SlARF4 Agrobacterium-mediated
transformation

ARFs play a key role in regulating
the expression of auxin response

genes
[129]

A. thaliana ArathEULS3 Agrobacterium-mediated
transformation

Stress-responsive protein, stomatal
closure [174]
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Table 3. Cont.

Abiotic Stresses Plant Species Targeted Gene Delivery Method Regulating Direction of
Response to Stress Function References

Heat Stress

S. lycopersicum L. BZR1 Agrobacterium-mediated
transformation Brassinosteroid regulation [136]

O sativa OsPDS Gene gun

Phytoene Desaturase gene encodes
one of the important enzymes in

the carotenoid
biosynthesis pathway

[175]

G. max L. GmHsp90A2 Agrobacterium-mediated
transformation

Molecular chaperone and heat
shock protein [176]

O. sativa OsHSA1 Agrobacterium-mediated
transformation

Chloroplast development at early
stages and functions can protect

chloroplasts under heat
stress at later stages

[135]

S. lycopersicum L. Slcpk28 Agrobacterium-mediated
transformation

Decreases the activity of
antioxidant enzymes [177]

O. sativa OsNAC006 PEG-mediated
Mediates the process of

photosynthesis and limits the
activity of antioxidant enzymes

[139]

Z. mays TMS5 Particle bombardment Thermosensitive genic
male sterile 5 [138]

Lactuca sativa LsNCED4 Agrobacterium-mediated
transformation

Key regulatory enzyme in the
biosynthesis of abscisic acid (ABA) [178]

O. sativa OsPYL1/4/6 Agrobacterium-mediated
transformation ABA receptor [179]
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6. Conclusions

Mutation breeding based on physical radiation and chemically induced random muta-
genesis has been widely used in the past for genome engineering. However, the emergence
of CRISPR/Cas9 genome-editing technology has opened new possibilities and revitalized
this field. With the integration of next-generation sequencing technologies, CRISPR/Cas9
has the potential to contribute to the development of future crops and mitigate the negative
impacts of climate change on global food production. One of the primary concerns of
genome-editing research is off-target effects. Despite being designed for specific genomic
regions, genome modification tools can sometimes bind to unintended locations, resulting
in undesired alterations. Off-target mutations are typically caused by the presence of
other sequences in the genome that are identical or similar to the target gene’s sequence.
Various computational methods have been developed to predict potential off-target sites
in the genome [180,181]. While some studies have reported off-target effects and ques-
tioned the specificity of the CRISPR/Cas9 system, other studies have shown no off-target
effects [182,183]. To address off-target activity, different strategies have been employed.
Examples include using shorter guide RNAs (sgRNAs) of less than 20 nucleotides and
dual Cas9 nickases, which create single-strand breaks, reducing the likelihood of off-target
effects [184–186]. One of the most significant advantages of the CRISPR/Cas9 system
is its ability to simultaneously target homologous genes with a single sgRNA [180,186].
Additionally, the Cas9/sgRNA expression vectors can contain multiple sgRNAs, enabling
the study of gene families and their pathways [75,180]. Efforts have been made to deliver
Cas9 and sgRNA into cells as protein and RNA to prevent the integration of foreign DNA
into the genome. Studies have successfully delivered Cas9 protein and sgRNA directly
to plant protoplasts using polyethylene glycol (PEG), as well as biolistically delivered the
Cas9-sgRNA ribonucleoprotein complex to maize embryos, resulting in targeted muta-
tions in regenerated plants [187,188]. By avoiding the use of recombinant DNA that can
integrate into the genome, plants generated through these methods can be exempt from
GMO regulations. These genome-editing techniques offer the potential to introduce desired
modifications at the nucleotide level, such as improving yield and quality and providing re-
sistance to diseases, pests, and abiotic stresses without the need for gene transfer. They also
have the advantage of saving time and resources compared to labor-intensive processes like
traditional selection and backcrossing. In the field of genome editing, there has been a shift
from early approaches that relied on mutagenic repair of induced double-strand breaks
to more precise and pre-defined modifications. This progress has been achieved through
constant optimization of the tools used in genome editing. One area of advancement is the
development of base editors, which are more efficient in inducing specific base changes in
the genome. These base editors have been improved to have enlarged editing windows,
allowing a broader range of targeted modifications. Additionally, advancements in base-
editing techniques have enabled the previously challenging C-G transversions, expanding
the repertoire of possible genetic modifications. Another significant development is the
introduction of prime editors, which have been optimized for applications in plants. Prime
editors offer greater precision by allowing the induction of specific substitutions, insertions,
and deletions into the genome. This precise control over genetic modifications enhances
the potential for targeted improvements in crops. Furthermore, recent breakthroughs
have focused on precise restructuring of chromosomes. This approach enables not only
the breakage or formation of genetic linkages, but also the swapping of promoters. By
manipulating chromosomal structures, researchers can achieve more intricate modifications
in the genome, opening up new possibilities for gene regulation and functional genomics.
Overall, the ongoing optimization and refinement of genome editing tools have led to
significant progress in achieving precise and pre-defined modifications in plant genomes.
These advancements hold great promise for crop improvement, enabling the develop-
ment of plants with desired traits, enhanced productivity, and improved resistance to
biotic and abiotic stresses [189]. Considering the relatively short history of next-generation
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genome-editing techniques, it is evident that they have a high developmental capacity and
significant innovation potential in the fields of breeding and plant health. Plants developed
using CRISPR/Cas9 genome-editing technology may be more readily accepted by society,
as they do not contain foreign genetic material transferred from other organisms. These
genome-editing technologies will continue to be used as they are valuable tools in terms
of crop improvement, disease resistance, and tolerance of abiotic conditions due to their
ability to generate desired mutations in targeted gene regions.
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