1,031 research outputs found

    Rotational Effects In The Continuous Vacuum-ultraviolet Fluorescence Spectrum Of H2 Associated With Spontaneous Dissociation

    Get PDF
    The effects of rotational-vibrational interaction, and of rotational coupling between the B 2p u+1 and C 2p u1 electronic states, on the B X fluorescence continuum of H2 associated with spontaneous dissociation were investigated spectroscopically using monochromatized synchrotron radiation for selective excitation of rovibronic states. The rotational shifts and perturbations in the modulated continua intensities observed agree well with close-coupling and Jeffreys-Wentzel-Kromers-Brillouin (JWKB) calculations also performed and are explained in terms of nonadiabatic coupling effects and rainbow-interference structures. A straightforward experimental technique is described to detect mixed electronic states. © 1990 The American Physical Society

    Rotational Effects In The VUV Continuum Of H2

    Get PDF
    The effects of rotation-vibration interaction and of rotational coupling between the B 2p 1Σu+ and C 2p 1Πu electronic states on the B-X continuum of H2 were investigated spectroscopically using monochromatized synchrotron radiation for selective excitation of rovibronic states. The perturbed continuum intensities observed for the first time agree well with close-coupling calculations also performed. © 1990 IOP Publishing Ltd

    Development of a device to simulate tooth mobility

    Get PDF
    Objectives: The testing of new materials under simulation of oral conditions is essential in medicine. For simulation of fracture strength different simulation devices are used for test set-up. The results of these in vitro tests differ because there is no standardization of tooth mobility in simulation devices. The aim of this study is to develop a simulation device that depicts the tooth mobility curve as accurately as possible and creates reproducible and scalable mobility curves. Materials and methods: With the aid of published literature and with the help of dentists, average forms of tooth classes were generated. Based on these tooth data, different abutment tooth shapes and different simulation devices were designed with a CAD system and were generated with a Rapid Prototyping system. Then, for all simulation devices the displacement curves were created with a universal testing machine and compared with the tooth mobility curve. With this new information, an improved adapted simulation device was constructed. Results: A simulations device that is able to simulate the mobility curve of natural teeth with high accuracy and where mobility is reproducible and scalable was developed

    Numerical simulations of stellar SiO maser variability. Investigation of the effect of shocks

    Get PDF
    A stellar hydrodynamic pulsation model has been combined with a SiO maser model in an attempt to calculate the temporal variability of SiO maser emission in the circumstellar envelope (CE) of a model AGB star. This study investigates whether the variations in local physical conditions brought about by shocks are the predominant contributing factor to SiO maser variability because, in this work, the radiative part of the pump is constant. We find that some aspects of the variability are not consistent with a pump provided by shock-enhanced collisions alone. In these simulations, gas parcels of relatively enhanced SiO abundance are distributed in a model CE by a Monte Carlo method, at a single epoch of the stellar cycle. From this epoch on, Lagrangian motions of individual parcels are calculated according to the velocity fields encountered in the model CE during the stellar pulsation cycle. The potentially masing gas parcels therefore experience different densities and temperatures, and have varying line-of-sight velocity gradients throughout the stellar cycle, which may or may not be suitable to produce maser emission. At each epoch (separated by 16.6 days), emission lines from the parcels are combined to produce synthetic spectra and VLBI-type images. We report here the results for v=1, J=1-0 (43-GHz) and J=2-1 (86-GHz) masers.Comment: 16 pages, 8 figures, accepted by A&

    Computing DC discharges in a wide range of currents with COMSOL MultiPhysics: time-dependent solvers vs. stationary solvers

    Get PDF
    The benefits of the usage of stationary over time-dependent solvers of COMSOL Multiphysics in the modelling of DC discharges are explored and demonstrated using as examples glow and high pressure arc discharges; in particular, it is investigated whether time-dependent solvers can be used for a systematic computation of different modes of these discharges. It has been found that most modes of both glow and high-pressure arc discharges cannot be computed in the whole range of their existence by a time-dependent solver. Further, time-dependent solvers are unsuitable for a computation of all the states belonging to the retrograde sections of the current-voltage characteristics of the modes, so the discharge manifests hysteresis, which, in principle, can be observed in the experiment.info:eu-repo/semantics/publishedVersio

    Toward a simulation approach for alkene ring-closing metathesis : scope and limitations of a model for RCM

    Get PDF
    A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of di-Et diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate consts. do not agree with exptl. studies in the literature. However, by fixing the values of important rate consts. and restricting the concn. ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concn. can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims

    Development and cross-national investigation of a model explaining participation in WHO-recommended and placebo behaviours to prevent COVID-19 infection

    Get PDF
    To protect themselves from COVID-19, people follow the recommendations of the authorities, but they also resort to placebos. To stop the virus, it is important to understand the factors underlying both types of preventive behaviour. This study examined whether our model (developed based on the Health Belief Model and the Transactional Model of Stress) can explain participation in WHO-recommended and placebo actions during the pandemic. Model was tested on a sample of 3346 participants from Italy, Japan, Poland, Korea, Sweden, and the US. It was broadly supported: objective risk and cues to action showed both direct and indirect (through perceived threat) associations with preventive behaviours. Moreover, locus of control, decision balance, health anxiety and preventive coping moderated these relationships. Numerous differences were also found between countries. We conclude that beliefs about control over health and perceived benefits of actions are critical to the development of interventions to improve adherence to recommendations

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Genomic patterns in the widespread Eurasian lynx shaped by Late Quaternary climatic fluctuations and anthropogenic impacts.

    Get PDF
    Disentangling the contribution of long-term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key for assessing genetic risks and designing conservation strategies. Here, we used 80 whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia to infer the demographic history, reconstruct genetic patterns and discuss the influence of long-term isolation and/or more recent human-driven changes. Our results show that Eurasian lynx populations shared a common history until 100 kya, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov, maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times likely drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified during the last centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long-term isolation argue for the restoration of lost population connectivity
    • …
    corecore