183 research outputs found
Alternative Suspension System for Space Shuttle Avionics Shelf
Engineers working in the Aerospace field under deadlines and strict budgets often miss the opportunity to design something that is considered new or innovative, favoring instead to use the tried-and-true design over those that may, in fact, be more efficient. This thesis examines an electronic equipment stowage shelf suspended from a frame in the cargo bay (mid fuselage) of the United States Space Transportation System (STS), the Space Shuttle, and 3 alternative designs. Four different designs are examined and evaluated. The first design is a conventional truss, representing the tried and true approach. The second is a cable dome type structure consisting of struts and pre-stressed wiring. The third and fourth are double layer tensegrity systems consisting of contiguous struts of the order k=1 and k=2 respectively
Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy
The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated
Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission
Attitude Control and Stabilization of Spacecraft with a Captured Asteroid
National Aeronautics and Space Administration's Asteroid Redirect Mission (ARM) aims to capture a Near Earth Orbit (NEO) asteroid or a piece of a large asteroid and transport it to the Earth{Moon system. In this paper, we provide a detailed analysis
of one of the main control challenges for the first ARM mission concept, namely despinning and three-axis stabilizing the asteroid and spacecraft combination after the ARM spacecraft captures the tumbling NEO asteroid. We first show that control laws, which explicitly use the dynamics of the system in their control law equation, encounter a fundamental limitation due to modeling uncertainties. We show that in the presence of large
modeling uncertainties, the resultant disturbance torque for such control laws may well exceed the maximum control torque of the conceptual ARM spacecraft. We then numerically compare the performance of three viable control laws: the robust nonlinear tracking control law, the adaptive nonlinear tracking control law, and the simple derivative plus proportional-derivative linear control strategy. We conclude that under very small mod-
eling uncertainties, which can be achieved using online system identification, the robust nonlinear tracking control law guarantees exponential convergence to the fuel-optimal reference trajectory and hence consumes the least fuel. On the other hand, in the presence of large modeling uncertainties, measurement errors, and actuator saturations, the best strategy for stabilizing the asteroid and spacecraft combination is to first despin the system using a derivative (rate damping) linear control law and then stabilize the system in the desired orientation using the simple proportional-derivative linear control law. More-over, the fuel consumed by the conceptual ARM spacecraft using these control strategies is upper bounded by 300 kg for the nominal range of NEO asteroid parameters. We conclude this paper with specific design guidelines for the ARM spacecraft for efficiently stabilizing the tumbling NEO asteroid and spacecraft combination
Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children
Background: Perfluoroalkyl substances (PFASs) are persistent organic pollutants that are suspected to be neurodevelopmental toxicants, but epidemiological evidence on neurodevelopmental effects of PFAS exposure is inconsistent. We investigated the associations between prenatal exposure to PFASs and symptoms of attention-deficit/hyperactivity disorder (ADHD) and cognitive functioning (language skills, estimated IQ and working memory) in preschool children, as well as effect modification by child sex. Material and methods: This study included 944 mother-child pairs enrolled in a longitudinal prospective study of ADHD symptoms (the ADHD Study), with participants recruited from The Norwegian Mother, Father and Child Cohort Study (MoBa). Boys and girls aged three and a half years, participated in extensive clinical assessments using well-validated tools; The Preschool Age Psychiatric Assessment interview, Child Development Inventory and Stanford-Binet (5th revision). Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of gestation. Multivariable adjusted regression models were used to examine exposure-outcome associations with two principal components extracted from the seven detected PFASs. Based on these results, we performed regression analyses of individual PFASs categorized into quintiles. Results: PFAS component 1 was mainly explained by perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA). PFAS component 2 was mainly explained by perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorononanoic acid (PFNA). Regression models showed a negative association between PFAS component 1 and nonverbal working memory [β = -0.08 (CI: -0.12, -0.03)] and a positive association between PFAS component 2 and verbal working memory [β = 0.07 (CI: 0.01, 0.12)]. There were no associations with ADHD symptoms, language skills or IQ. For verbal working memory and PFAS component 2, we found evidence for effect modification by child sex, with associations only for boys. The results of quintile models with individual PFASs, showed the same pattern for working memory as the results in the component regression analyses. There were negative associations between nonverbal working memory and quintiles of PFOA, PFNA, PFHxS, PFHpS and PFOS and positive associations between verbal working memory and quintiles of PFOA, PFNA, PFDA and PFUnDA, with significant relationships mainly in the highest concentration groups. Conclusions: Based on our results, we did not find consistent evidence to conclude that prenatal exposure to PFASs are associated with ADHD symptoms or cognitive dysfunctions in preschool children aged three and a half years, which is in line with the majority of studies in this area. Our results showed some associations between PFASs and working memory, particularly negative relationships with nonverbal working memory, but also positive relationships with verbal working memory. The relationships were weak, as well as both positive and negative, which suggest no clear association – and need for replication
Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children
Background: Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may be a risk factor for neurodevelopmental deficits and disorders, but evidence is inconsistent. Objectives: We investigated whether prenatal exposure to PFAS were associated with childhood diagnosis of attention-deficit/hyperactivity disorder (ADHD) or autism spectrum disorder (ASD). Methods: This study was based on the Norwegian Mother, Father and Child Cohort Study and included n = 821 ADHD cases, n = 400 ASD cases and n = 980 controls. Diagnostic cases were identified by linkage with the Norwegian Patient Registry. In addition, we used data from the Medical Birth Registry of Norway. The study included the following PFAS measured in maternal plasma sampled mid-pregnancy: Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptanesulfonic acid (PFHpS), and perfluorooctane sulfonate (PFOS). Relationships between individual PFAS and ADHD or ASD diagnoses were examined using multivariable adjusted logistic regression models. We also tested for possible non-linear exposure-outcome associations. Further, we investigated the PFAS mixture associations with ASD and ADHD diagnoses using a quantile-based g-computation approach. Results: Odds of ASD was significantly elevated in PFOA quartile 2 [OR = 1.71 (95% CI: 1.20, 2.45)] compared to quartile 1, and PFOA appeared to have a non-linear, inverted U-shaped dose-response relationship with ASD. PFOA was also associated with increased odds of ADHD, mainly in quartile 2 [OR = 1.54 (95% CI: 1.16, 2.04)] compared to quartile 1, and displayed a non-linear relationship in the restricted cubic spline model. Several PFAS (PFUnDA, PFDA, and PFOS) were inversely associated with odds of ADHD and/or ASD. Some of the associations were modified by child sex and maternal education. The overall PFAS mixture was inversely associated with ASD [OR = 0.76 (95% CI: 0.64, 0.90)] as well as the carboxylate mixture [OR = 0.79 (95% CI: 0.68, 0.93)] and the sulfonate mixture [OR = 0.84 (95% CI: 0.73, 0.96)]. Conclusion: Prenatal exposure to PFOA was associated with increased risk of ASD and ADHD in children. For some PFAS, as well as their mixtures, there were inverse associations with ASD and/or ADHD. However, the inverse associations reported herein should not be interpreted as protective effects, but rather that there could be some unresolved confounding for these relationships. The epidemiologic literature linking PFAS exposures with neurodevelopmental outcomes is still inconclusive, suggesting the need for more research to elucidate the neurotoxicological potential of PFAS during early development
Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014–2015
Context. Comet 67P/Churyumov-Gerasimenko was selected in 2003 as the new target of the Rosetta mission. It has since been the subject of a detailed campaign of observations to characterise its nucleus and activity.
Aims. We present previously unpublished data taken around the start of activity of the comet in 2007/8, before its last perihelion passage. We constrain the time of the start of activity, and combine this with other data taken throughout the comet’s orbit to make predictions for its likely behaviour during 2014/5 while Rosetta is operating.
Methods. A considerable difficulty in observing 67P during the past years has been its position against crowded fields towards the Galactic centre for much of the time. The 2007/8 data presented here were particularly difficult, and the comet will once again be badly placed for Earth-based observations in 2014/5. We make use of the difference image analysis technique, which is commonly used in variable star and exoplanet research, to remove background sources and extract images of the comet. In addition, we reprocess a large quantity of archival images of 67P covering its full orbit, to produce a heliocentric lightcurve. By using consistent reduction, measurement and calibration techniques we generate a remarkably clean lightcurve, which can be used to measure a brightness-distance relationship and to predict the future brightness of the comet.
Results. We determine that the comet was active around November 2007, at a pre-perihelion distance from the Sun of 4.3 AU. The comet will reach this distance, and probably become active again, in March 2014. We find that the dust brightness can be well described by Afρ ∝ r-3.2 pre-perihelion and ∝ r-3.4 post-perihelion, and that the comet has a higher dust-to-gas ratio than average, with log (Afρ/Q(H2O)) = − 24.94 ± 0.22 cm s molecule-1 at r < 2 AU. A model fit to the photometric data suggests that only a small fraction (1.4%) of the surface is active
Prenatal phthalate exposures and executive function in preschool children
Background: Prenatal phthalate exposure has been linked with altered neurodevelopment, including externalizing behaviors and attention-deficit hyperactivity disorder (ADHD). However, the implicated metabolite, neurobehavioral endpoint, and child sex have not always been consistent across studies, possibly due to heterogeneity in neurodevelopmental instruments. The complex set of findings may be synthesized using executive function (EF), a construct of complex cognitive processes that facilitate ongoing goal-directed behaviors. Impaired EF can be presented with various phenotypes of poor neurodevelopment, differently across structured conditions, home/community, or preschool/school. We evaluated the relationship between prenatal phthalate exposure and comprehensive assessment of preschool EF. Methods: Our study comprised 262 children with clinically significant/subthreshold ADHD symptoms and 78 typically developing children who were born between 2003 and 2008 and participated in the Preschool ADHD Substudy, which is nested within a population-based prospective cohort study, the Norwegian Mother, Father, and Child Cohort (MoBa). Twelve phthalate metabolites were measured from urine samples that their mothers had provided during pregnancy, at 17 weeks’ gestation. All children, at approximately 3.5-years, took part in a detailed clinical assessment that included parent-and teacher-rated inventories and administered tests. We used instruments that measured constructs related to EF, which include a parent-and teacher-reported Behavior Rating Inventory of Executive Function-Preschool (BRIEF-P) and three performance-based tests: A Developmental NEuroPSYchological Assessment (NEPSY), Stanford-Binet intelligence test V (SB5), and the cookie delay task (CDT). The standard deviation change in test score per interquartile range (IQR) increase in phthalate metabolite was estimated with multivariable linear regression. We applied weighting in all models to account for the oversampling of children with clinically significant or subthreshold symptoms of ADHD. Additionally, we assessed modification by child sex and potential co-pollutant confounding. Results: Elevated exposure to mono-benzyl phthalate (MBzP) during pregnancy was associated with poorer EF, across all domains and instruments, in both sex. For example, an IQR increase in MBzP was associated with poorer working memory rated by parent (1.23 [95% CI: 0.20, 2.26]) and teacher (1.13 [0.14, 2.13]) using BRIEF-P, and administered tests such as SB5 (no-verbal: 0.19 [0.09, 0.28]; verbal: 0.13 [0.01, 0.25]). Adverse associations were also observed for mono-n-butyl phthalate (MnBP) and mono-iso-butyl phthalate (MiBP), although results varied by instruments. EF domains reported by parents using BRIEF-P were most apparently implicated, with stronger associations among boys (e.g., MnBP and inhibition: 2.74 [1.77, 3.72]; MiBP and inhibition: 1.88 [0.84, 2.92]) than among girls (e.g., MnBP and inhibition: −0.63 [−2.08, 0.83], interaction p-value: 0.04; MiBP and inhibition: −0.15 [−1.04, 0.74], interaction p-value: 0.3). Differences by sex, however, were not found for the teacher-rated BRIEF-P or administered tests including NEPSY, SB5, and CDT. Conclusion and relevance: Elevated mid-pregnancy MBzP, MiBP, and MnBP were associated with more adverse profiles of EF among preschool-aged children across a range of instruments and raters, with some associations found only among boys. Given our findings and accumulating evidence of the prenatal period as a critical window for phthalate exposure, there is a timely need to expand the current phthalate regulations focused on baby products to include pregnancy exposures
Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability
Fullerene dimerization has been linked to short circuit current (Jsc) losses in organic solar cells comprised of certain polymer–fullerene systems. We investigate several polymer–fullerene systems, which present Jsc loss to varying degrees, in order to determine under which conditions dimerization occurs. By reintroducing dimers into fresh devices, we confirm that the photo-induced dimers are indeed the origin of the Jsc loss. We find that both film morphology and electrical bias affect the photodimerization process and thus the associated loss of Jsc. In plain fullerene films, a higher degree of crystallinity can inhibit the dimerization reaction, as observed by high performance liquid chromatography (HPLC) measurements. In blend films, the amount of dimerization depends on the degree of mixing between polymer and fullerene. For highly mixed systems with very amorphous polymers, no dimerization is observed. In solar cells with pure polymer and fullerene domains, we tune the fullerene morphology from amorphous to crystalline by thermal annealing. Similar to neat fullerene films, we observe improved light stability for devices with crystalline fullerene domains. Changing the operating conditions of the investigated solar cells from Voc to Jsc also significantly reduces the amount of dimerization-related Jsc loss; HPLC analysis of the active layer shows that more dimers are formed if the cell is held at Voc instead of Jsc. The effect of bias on dimerization, as well as a clear correlation between PL quenching and reduced dimerization upon addition of small amounts of an amorphous polymer into PC60BM films, suggests a reaction mechanism via excitons
The Neural Basis of Following Advice
Learning by following explicit advice is fundamental for human cultural evolution, yet the neurobiology of adaptive social learning is largely unknown. Here, we used simulations to analyze the adaptive value of social learning mechanisms, computational modeling of behavioral data to describe cognitive mechanisms involved in social learning, and model-based functional magnetic resonance imaging (fMRI) to identify the neurobiological basis of following advice. One-time advice received before learning had a sustained influence on people's learning processes. This was best explained by social learning mechanisms implementing a more positive evaluation of the outcomes from recommended options. Computer simulations showed that this “outcome-bonus” accumulates more rewards than an alternative mechanism implementing higher initial reward expectation for recommended options. fMRI results revealed a neural outcome-bonus signal in the septal area and the left caudate. This neural signal coded rewards in the absence of advice, and crucially, it signaled greater positive rewards for positive and negative feedback after recommended rather than after non-recommended choices. Hence, our results indicate that following advice is intrinsically rewarding. A positive correlation between the model's outcome-bonus parameter and amygdala activity after positive feedback directly relates the computational model to brain activity. These results advance the understanding of social learning by providing a neurobiological account for adaptive learning from advice
- …