823 research outputs found

    PRECISION FLOW-MONITORING SPECTROMETER WITH LOW NOISE AND HIGH STABILITY.

    Full text link

    Auditory discrimination improvement predicts awakening of postanoxic comatose patients treated with targeted temperature management at 36°C.

    Get PDF
    Outcome prognostication in postanoxic comatose patients is more accurate in predicting poor than good recovery. Using electroencephalography recordings in patients treated with targeted temperature management at 33°C (TTM 33), we have previously shown that improvement in auditory discrimination over the first days of coma predicted awakening. Given the increased application of a 36°C temperature target (TTM 36), here we aimed at validating the predictive value of auditory discrimination in the TTM 36 setting. In this prospective multicenter study, we analyzed the EEG responses to auditory stimuli from 60 consecutive patients from the first and second coma day. A semiautomatic decoding analysis was applied to single patient data to quantify discrimination performance between frequently repeated and deviant sounds. The decoding change from the first to second day was used for predicting patient outcome. We observed an increase in auditory discrimination in 25 out of 60 patients. Among them, 17 awoke from coma (68% positive predictive value; 95% confidence interval: 0.46-0.85). By excluding patients with electroencephalographic epileptiform features, 15 of 18 exhibited improvement in auditory discrimination (83% positive predictive value; 95% confidence interval: 0.59-0.96). Specificity of good outcome prediction increased after adding auditory discrimination to EEG reactivity. These results suggest that tracking of auditory discrimination over time is informative of good recovery independent of the temperature target. This quantitative test provides complementary information to existing clinical tools by identifying patients with high chances of recovery and encouraging the maintenance of life support

    The Effect of Dialysis Membrane Flux on Amino Acid Loss in Hemodialysis Patients

    Get PDF
    We examined whether high flux membranes (HF) may induce a greater loss of amino acids compared to low flux membranes (LF). Ten hemodialysis patients participated in this study. Pre- and post-hemodialysis plasma amino acid profiles were measured by reverse-phase high pressure liquid chromatography for both HF and LF. We measured the dialysate amino acid losses during hemodialysis. The reduction difference for plasma total amino acid (TAA), essential amino acid (EAA), and branch chained amino acid (BCAA) was not significantly different in comparisons between the two membranes. (HF vs. LF; TAA 66.85±30.56 vs. 53.78±41.28, p=0.12; EAA 14.79±17.16 vs. 17.97±28.69, p=0.12; BCAA 2.21±6.08 vs. 4.16±10.98 mg/L, p=0.13). For the HF, the reduction in plasma amino acid levels for TAA and EAA were statistically significant. Although it was not statistically significant, the dialysate losses of BCAA were greater than the reduction in plasma (plasma reduction vs. dialysate loss; HF 2.21±6.08 vs. 6.58±4.32, LF 4.16±10.98 vs. 7.96±3.25 mg/L). HF with large pores and a sieving coefficient do not influence dialysate amino acid losses. Hemodialysis itself may influence the dialysate amino acid losses and may have an effect on protein metabolism

    Effect of Peptide Size on Antioxidant Properties of African Yam Bean Seed (Sphenostylis stenocarpa) Protein Hydrolysate Fractions

    Get PDF
    Enzymatic hydrolysate of African yam bean seed protein isolate was prepared by treatment with alcalase. The hydrolysate was further fractionated into peptide sizes of <1, 1–3, 3–5 and 5–10 kDa using membrane ultrafiltration. The protein hydrolysate (APH) and its membrane ultrafiltration fractions were assayed for in vitro antioxidant activities. The <1 kDa peptides exhibited significantly better (p < 0.05) ferric reducing power, diphenyl-1-picryhydradzyl (DPPH) and hydroxyl radical scavenging activities when compared to peptide fractions of higher molecular weights. The high activity of <1 kDa peptides in these antioxidant assay systems may be related to the high levels of total hydrophobic and aromatic amino acids. In comparison to glutathione (GSH), the APH and its membrane fractions had significantly higher (p < 0.05) ability to chelate metal ions. In contrast, GSH had significantly greater (p < 0.05) ferric reducing power and free radical scavenging activities than APH and its membrane fractions. The APH and its membrane fractions effectively inhibited lipid peroxidation, results that were concentration dependent. The activity of APH and its membrane fractions against linoleic acid oxidation was higher when compared to that of GSH but lower than that of butylated hydroxyl toluene (BHT). The results show potential use of APH and its membrane fractions as antioxidants in the management of oxidative stress-related metabolic disorders and in the prevention of lipid oxidation in food products

    Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure

    Get PDF
    This work presents a RP-HPLC method for the simultaneous quantification of free amino acids and biogenic amines in liquid food matrices and the results of the application to honey and wine samples obtained from different production processes and geographic origins. The developed methodology is based on a pre-column derivatization with o-phthaldialdehyde carried out in the sample injection loop. The compounds were separated in a Nova-Pack RP-C18 column (150 mm × 3.9 mm, 4 μm) at 35 °C. The mobile phase used was a mixture of phase A: 10 mM sodium phosphate buffer (pH 7.3), methanol and tetrahydrofuran (91:8:1); and phase B: methanol and phosphate buffer (80:20), with a flow rate of 1.0 ml/min. Fluorescence detection was used at an excitation wavelength of 335 nm and an emission wavelength of 440 nm. The separation and quantification of 19 amino acids and 6 amines was carried out in a single run as their OPA/MCE derivatives elute within 80 min, ensuring a reproducible quantification. The method showed to be adequate for the purpose, with an average RSD of 2% for the different amino acids; detection limits varying between 0.71 mg/l (Asn) and 8.26 mg/l (Lys) and recovery rates between 63.0% (Cad) and 98.0% (Asp). The amino acids present at the highest concentration in honey and wine samples were phenylalanine and arginine, respectively. Only residual levels of biogenic amines were detected in the analysed samples

    Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma.

    Get PDF
    Prominent research in patients with disorders of consciousness investigated the electrophysiological correlates of auditory deviance detection as a marker of consciousness recovery. Here, we extend previous studies by investigating whether somatosensory deviance detection provides an added value for outcome prediction in postanoxic comatose patients. Electroencephalography responses to frequent and rare stimuli were obtained from 66 patients on the first and second day after coma onset. Multivariate decoding analysis revealed an above chance-level auditory discrimination in 25 patients on the first day and in 31 patients on the second day. Tactile discrimination was significant in 16 patients on the first day and in 23 patients on the second day. Single-day sensory discrimination was unrelated to patients' outcome in both modalities. However, improvement of auditory discrimination from first to the second day was predictive of good outcome with a positive predictive power (PPV) of 0.73 (CI = 0.52-0.88). Analyses considering the improvement of tactile, auditory and tactile, or either auditory or tactile discrimination showed no significant prediction of good outcome (PPVs = 0.58-0.68). Our results show that in the acute phase of coma deviance detection is largely preserved for both auditory and tactile modalities. However, we found no evidence for an added value of somatosensory to auditory deviance detection function for coma-outcome prediction

    In planta function of compatible solute transporters of the AtProT family

    Get PDF
    The three proline transporters of Arabidopsis thaliana (AtProTs) transport the compatible solutes proline and glycine betaine and the stress-induced compound γ-aminobutyric acid when expressed in heterologous systems. The aim of the present study was to show transport and physiological relevance of these three AtProTs in planta. Using single, double, and triple knockout mutants and AtProT-overexpressing lines, proline content, growth on proline, transport of radiolabelled betaine, and expression of AtProT genes and enzymes of proline metabolism were analysed. AtProT2 was shown to facilitate uptake of L- and D-proline as well as [14C]glycine betaine in planta, indicating a role in the import of compatible solutes into the root. Toxic concentrations of L- and D-proline resulted in a drastic growth retardation of AtProT-overexpressing plants, demonstrating the need for a precise regulation of proline uptake and/or distribution. Furthermore evidence is provided that AtProT genes are highly expressed in tissues with elevated proline content—that is, pollen and leaf epidermis
    corecore