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Abstract 

BACKGROUND: Outcome prognostication in postanoxic comatose patients is more accurate 

in predicting poor than good recovery. Using electroencephalography recordings in patients 

treated with targeted temperature management at 33°C (TTM 33), we have previously shown 

that improvement in auditory discrimination over the first days of coma predicted awakening. 

Given the increased application of a 36°C temperature target (TTM 36), here we aimed at 

validating the predictive value of auditory discrimination in the TTM 36 setting.  
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METHODS: In this prospective multicenter study, we analyzed the EEG responses to 

auditory stimuli from 60 consecutive patients from the first and second coma day. A 

semiautomatic decoding analysis was applied to single patient data to quantify discrimination 

performance between frequently repeated and deviant sounds. The decoding change from the 

first to second day was used for predicting patient outcome.  

RESULTS: We observed an increase in auditory discrimination in 25 out of 60 patients. 

Among them, 17 awoke from coma (68% positive predictive value; 95% confidence interval: 

0.46-0.85). By excluding patients with electroencephalographic epileptiform features, 15 of 

18 exhibited improvement in auditory discrimination (83% positive predictive value; 95% 

confidence interval: 0.59-0.96). Specificity of good outcome prediction increased after adding 

auditory discrimination to EEG reactivity. 

CONCLUSION: These results suggest that tracking of auditory discrimination over time is 

informative of good recovery independent of the temperature target. This quantitative test 

provides complementary information to existing clinical tools by identifying patients with 

high chances of recovery and encouraging the maintenance of life support. 

 

Keywords: Cardiac arrest, coma, targeted temperature management, EEG, mismatch 

negativity, multivariate decoding 

 

1. Introduction 

Cardiac arrest (CA) has an annual incidence of 50-110 /100’000 [1], with an 

approximately 10% successful resuscitation rate [2]. The considerable amelioration in 

recovery rate of hospitalized patients can be attributed to recent advances in therapeutic 

interventions, including the introduction of Targeted Temperature Management (TTM) 

targeting 33°C (TTM 33) [3] and, more recently 36°C (TTM 36) [4]. In this context, 

clinicians aim at providing early and accurate predictions of patients’ outcome in order to 

guide decision-making upon continuation of intensive treatment. 

This task is typically performed using a multimodal approach including the 

standardized predictors: bilateral absence of brainstem reflexes, absence of motor response to 
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pain and treatment-resistant myoclonus, unreactive or discontinuous electroencephalography 

(EEG) background activity, bilateral absence of N20 somatosensory evoked potentials (SSEP) 

and high serum neuron specific enolase (NSE). These markers are robustly related to poor 

neurological recovery (see [5] for an overview). By contrast, their presence does not predict 

whether the patient will recover from coma - with the exception of EEG background 

reactivity [6, 7], which however showed imperfect inter-rater agreement despite attempts for 

standardized interpretations (e.g. [8, 9]). Thus, the introduction of standardized quantitative 

tests for the prediction of coma outcome, specifically targeting identification of good 

prognosis, could complement and fill a prognostic gap in routine clinical practice.  

In recent studies we have combined the use of a mismatch negativity (MMN) paradigm 

and automated EEG analyses to quantify auditory discrimination at the single-patient level 

[10-12]. We showed that improvement of auditory discrimination over the first two days of 

post-anoxic coma was informative about good outcome in a large cohort of consecutive post-

anoxic comatose patients treated with TTM 33 (up to 93% positive predictive value, PPV, in 

[10]). In line with these results, an improvement in auditory discrimination correlated 

positively with functional and cognitive performance at awakening in survivors [13]. Despite 

these promising results in patients treated with TTM 33, it is currently unknown whether our 

method is valid in those undergoing TTM 36. Thus, the aim of our study was to update and to 

compare the PPV of this tool in patients treated with TTM 36 to the previously reported 

results in patients undergoing TTM 33. 

 

2. Materials and Methods 

2.1. Post-Anoxic Comatose Patients  

We prospectively collected data from 84 consecutive patients older than 18 years 

successfully resuscitated after CA admitted to the medical-surgical intensive care units at the 
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University Hospitals of Lausanne (58 patients), Bern (23 patients), Fribourg (2 patients), Sion 

(1 patient) between July 2014 and February 2017. For this study we collected data from all 

patients receiving TTM 36 who were admitted to the participating hospital centers during the 

study period, given availability of the EEG recording equipment and experimenter, and a high 

probability of the patient being still alive for the first day EEG recording based on current 

clinical assessment. TTM 36 was applied for 24 hours using ice packs or intravenous ice-cold 

fluids together with a feedback controlled cooling device (Arctic Sun System, Medivance, 

Louisville or Thermogard XP, ZOLL Medical, Zug, Switzerland) followed by removal of 

TTM after 24 hours. Propofol (2-3 mg/kg/h), Midazolam (0.1 mg/kg/h) and Fentanyl (1.5 

μg/kg/h) were given for analgesia-sedation, and Vecuronium, Rocuronium, or Altracurium for 

controlling shivering. Patients’ outcome was defined as the best functional level reached 

within 3 month after CA. We considered both the results of clinical assessments during 

hospitalization using Full Outline of UnResponsiveness (FOUR; [14]), repeated at least twice 

within 72 hours following CA, and regular assessment of neurological state during 

hospitalization, as well as the result of a semi-structured phone interview at three months after 

CA using Cerebral Performance Categories (CPC; [15]): CPC 1 indicates full recovery; CPC 

2 conscious with moderate disability; CPC 3 conscious with severe disability; CPC 4 coma or 

persistent vegetative state, and CPC 5 death. We consider as patients with good outcome (in 

the following ‘Survivors’, n = 34) those with CPC 1-3 at any time within three months after 

coma onset. All patients who died within three months from coma onset without ever 

awakening are considered within the poor outcome group (in the following ‘Non-Survivors’; 

n = 26). All of them had a CPC 5. Of 84 patients, 15 were excluded from analysis because of 

missing second EEG recording (i.e. 8 awoke, 6 deceased, and 1 patient was transferred to a 

different hospital before 48 hours following CA). For our main analysis, we excluded 9 

patients because a relevant comorbidity (e.g. second CA, multiorganic failure, or intracerebral 
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bleeding) unrelated to the initial CA was diagnosed only after our recordings, and caused 

death within 3 months. Because our approach is based on EEG recordings during the first two 

days following CA, our method cannot foresee such secondary events. Thus, the number of 

patients included for the analysis presented in the main text was 60. Informed written consent 

for participation in this study was obtained prior to EEG recordings from a family member, 

legal representative, or treating clinician not involved in this study. The study protocol was 

approved by the ethical commissions of each hospital. 

2.2. Clinical Assessments 

Neurological examination of pupillary, oculocephalic, corneal reflexes and motor 

reactivity to pain stimulation was assessed by a certified neurologist after withdrawal of TTM 

and weaning of pharmacological sedation (at least twice between 36 and 72 hours after CA, or 

more often if needed). Two clinical EEG recordings were performed, within 24 hours (at least 

6 hours) after CA during TTM, and at 36-48 hours after CA after withdrawal of TTM at the 

time of clinical examination [16]. EEG background reactivity interpretation was performed by 

experienced electroencephalographers. Epileptiform EEG was defined as any repetitive 

periodic or rhythmic spikes, or sharp waves, or spike-waves [8]. Bilateral median nerve SSEP 

were recorded at least 24 hours after CA. NSE was measured at 24 and 48 hours after CA and 

analyzed with an automated immunofluorescent assay (Thermo Scientific Brahms NSE 

Kryptor Immunoassay, Hennigsdorf, Germany; and Roche Cobas Elecsys, Roche 

Diagnostics, Rotkreuz, Switzerland). Withdrawal of care was decided using a 

multidisciplinary approach, if two or more of the following criteria were present [17]: 1. 

Unreactive EEG background after TTM and off sedation, 2. Treatment-resistant myoclonus, 

3. Bilateral absence of N20 in SSEP, and 4. Incomplete return of brainstem reflexes.
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2.3. EEG Methods and Stimulation Protocol 

Patients took part in a MMN protocol during concurrent EEG recordings described 

previously [10, 11]. A detailed description of the EEG acquisition, data processing, and 

multivariate decoding analysis methods can be found in the Supplemental Material. 

 

3. Results 

3.1. Comatose Patients’ Outcome 

Among the 60 patients analyzed (i.e. ‘All Patients’ sample, 17 women, age mean = 67 

years, SD = 12 years), 34 (57%) had a good outcome and 26 (43%) a poor outcome. Out of 

the 60 patients tested, 14 (23%) had an EEG with epileptiform features either on the first day 

(3 patients, 5%), on the second day (4 patients, 6%), or on both days following CA (7 

patients, 12%). Because such epileptiform activity can affect evoked potential recordings [18, 

19], and based on our previous results showing a high false positive rates for outcome 

prediction in these patients [10], we report a separate outcome prediction analysis for a 

reduced sample of 46 patients without epileptiform features (i.e. ‘No Epileptiform Features’ 

sample, 12 women, age mean = 66 years, SD = 12 years) out of which 31 (67%) had a good 

outcome and 15 (33%) a poor outcome.  

 

3.2. Outcome-Prediction for Patients Treated with TTM 36 

3.2.1. All Patients Sample 

Out of the 60 patients, the average decoding performance for 34 Survivors was 

AUCDAY1 = 0.611 ± 0.005 and AUCDAY2 = 0.615 ± 0.005, and for the 26 Non-Survivors 

decoding performance was AUCDAY1 = 0.627 ± 0.006 and AUCDAY2 = 0.616 ± 0.006 (Figure 

1-A). We considered the change in decoding performance from Day 1 to Day 2 in accordance 
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with our previous studies [10, 11]. An improvement was observed in 17 of 34 Survivors 

(50%), whereas the majority of the Non-Survivors (18 of 26, 69%) showed a decrease in 

decoding performance (Figure 2-A). Overall, across all 60 patients, an improvement in AUC 

from Day 1 to Day 2 was observed in 25 patients, among whom 17 awoke from coma, 

resulting in 68% predictive value of good outcome (95% CI = 0.46 – 0.85; Table 1). The 

sensitivity (i.e., ratio of Survivors showing an increase) was 50% (95% CI = 0.32 – 0.68) and 

the specificity (i.e., ratio of Non-Survivors showing a decrease) was 69% (95% CI = 0.48 – 

0.86). The predictive value of poor outcome (i.e. ratio patients showing decrease with a poor 

outcome) was 51% (95% CI = 0.34 – 0.69), and the overall accuracy was 58% (95% CI = 

0.38 – 0.63; Table 1). For completeness and to ease comparison with previous studies, we 

report in Table S1 the outcome prediction results including patients with comorbidities. 

 

3.2.2. No Epileptiform Features Sample 

Analysis of the data from 46 patients revealed an average decoding performance for 31 

Survivors of AUCDAY1 = 0.601 ± 0.005 and AUCDAY2 = 0.612 ± 0.005 and for the 15 Non-

Survivors decoding performance was AUCDAY1 = 0.625 ± 0.008 and AUCDAY2 = 0.610 ± 

0.005 (Figure 1-B). An improvement was observed in 15 of 31 Survivors (48%), whereas the 

vast majority of the Non-Survivors (12 of 15 patients, 80%) showed a decrease in decoding 

performance (Figure 2-B). Thus, across these 46 patients, an improvement in AUC from Day 

1 to Day 2 was observed in 18 patients, among whom 15 awoke from coma, resulting in 83% 

predictive value of good outcome (95% CI = 0.59 – 0.96, Table 1). The sensitivity was 48% 

(95% CI = 0.30 – 0.67) and the specificity was 80% (95% CI = 0.52 – 0.96). The predictive 

value of poor outcome was 43% (95% CI = 0.24 – 0.63), and the overall accuracy 59% (95% 

CI = 0.33 – 0.59; Table 1). 
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3.3. Outcome-Prediction: Comparison Between 36°C and 33°C Temperature Targets  

Comparison of patients treated with TTM 36 (present study) to a different sample of 

patients treated with TTM 33 (previously published in [10]) suggests that outcome prediction 

perform similarly when excluding patients with epileptiform features: the positive predictive 

values and specificities were significantly above chance level, with overlapping confidence 

intervals (Table 1). However, the overall outcome prediction including all patients of the 

present study was not as robust as in the TTM 33 cohort. 

 

3.4. Clinical Characteristics 

We compared demographics and clinical characteristics between patients showing an 

increase and patients showing a decrease of decoding performance separately for Survivors (n 

= 35, Table 2) and Non-Survivors (N = 25, Table 3) and to assess if additional factors 

contributed to the outcome prediction results. There were no differences in gender 

distribution, age, CA etiology, return of spontaneous circulation (ROSC), presence/absence of 

brainstem reflexes, latency of clinical EEG assessment and in the majority of semi-

quantitative markers of EEG (i.e. discontinuity, reactivity). However, for Non-Survivors we 

observed a difference regarding the presence of epileptiform EEG. Out of the 7 Non-

Survivors showing an increase, 5 (71%) had an epileptiform first EEG, whereas out of the 18 

Non-Survivors showing a decrease, this only occurred in 5 (28%). Thus, in line with our 

previous study, the increase of decoding performance in these patients (and therefore the 

occurrence as false positives) can be somewhat related to epileptiform activity [10].  
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4. Discussion 

We found that an improvement in auditory discrimination over the first two days of 

coma predicts good outcome in patients treated with TTM 36, extending our previous 

findings in 94 patients treated with TTM 33 [10]. The higher predictive value of good 

outcome in TTM 36 when patients with epileptiform features were excluded confirm previous 

results obtained in TTM 33 ([10, 11]). Control analysis ruled out that these results were based 

on decoding performance from the first day alone (see Supplemental Material, Table S2). 

This suggests that our method is robust across different TTM target temperatures. These 

results are further in line with recent results of a large multicentric clinical trial showing that 

the chosen temperature target (i.e. 33°C, 36°C) did neither affect prognostic markers of poor 

outcome, nor the patient’s outcome itself [4]. 

 

4.1. Comparison to Existing Prognostication Methods 

 Prognostication of coma outcome based on a multimodal approach typically considers 

incomplete brainstem reflexes, the presence of myoclonous, the absence of SSEP, an 

unreactive background EEG, and high NSE markers [5], which are highly predictive of 

negative outcome. Current propositions for predicting good outcome include reactive 

background EEG, with high PPV both for patients treated with TTM 33 [6] and TTM 36 [20] 

and as confirmed by similar results in our cohort when predicting outcome based on reactivity 

assessed on Day2 (see Table S1). However, the lack of standardization and inevitable 

subjectivity in its clinical assessment call for further developments of unbiased and 

quantitative predictors of good outcome after CA. A recent study used computer algorithm-

based extraction of distinct EEG features upon which multivariate analysis achieved up to 

83% accuracy for detecting positive and negative outcome [7]. However, in this approach the 

optimal choice for a classification threshold remains undetermined, which is a necessary step 
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for implementation in the clinical practice. In addition, it remains difficult to interpret 

physiologically due to the high dimensionality of the classified features. Our method 

overcomes some of the current limitations in available clinical predictors by providing a 

quantitative approach with a high PPV at a fixed classification threshold. In addition, it is 

applicable at bedside at the single-patient level and interpretable by linking functional 

improvement over time with survival rate. The lack of differences in the majority of clinical 

characteristics between patients improving or decreasing in decoding performance (with the 

only exception of epileptiform EEG on the first day) suggests that the predictive value of our 

method is not redundant with currently available clinical tests (see Tables 2 and 3). This is 

supported by the higher PPV and specificity for good outcome prediction when considering 

together reactive EEG on Day 2 and auditory discrimination improvement, as compared to 

these variables considered separately (Table S1, and [21] for comparisons to previous 

cohorts). Of note, comparisons between clinical data and the auditory test should be 

considered with some caution, as the former were known to clinicians and may have 

influenced patients’ outcome.   

 

4.2. Impact of Epileptiform EEG on Good Outcome Prediction 

 We found that inclusion of patients with epileptiform EEG resulted in a lower PPV for 

good outcome for the TTM 36 sample of this study. This was related to the fact that the 

majority of Non-Survivors with an increase in decoding performance (i.e. 5 out of 8 patients, 

63%) had epileptiform EEG on the first and/or second day after coma onset. Among the 14 

patients with these features 7 (50%) showed an increase of decoding performance, suggesting 

chance-level performance in this subset (formal statistical evaluation was not performed due 

to the low number of patients). Notably, the vast majority of subjects with an epileptiform 

EEG in our study (i.e. 12 out of 14 patients, 86%) had a poor outcome, in line with previous 



COMA-OUTCOME NORMOTHERMIA 

 

11 

studies [17, 22]. Indeed, the high-amplitude epileptiform activity can strongly affect evoked 

potential recording [18, 19] in particular in the context of single-trial analysis as used in the 

present study [10]. Thus, it remains a challenge for future studies to assess whether our 

method could be improved by implementing an automated detection of epileptiform activity 

(see [23] for a review). 

 

4.3. Brain Mechanisms of Auditory Discrimination Progression 

Anoxia-induced brain swelling in the acute phase after CA is associated with diffuse 

brain damage in thalamus, basal ganglia, cerebellum, hippocampus, frontal, and parietal 

cortices [24-26]. Neural degeneration over time in these regions has been described in non-

survivors of CA [27, 28]. Because neural processing in hippocampal [29-31] and fronto-

parietal regions [32, 33] plays a crucial role for sensory-memory trace formation and violation 

detection, the progression of auditory discrimination measured in our study might directly 

reflect the progression of anoxia-induced functional impairment in these brain regions. This 

interpretation receives support from diffusion-weighted magnetic resonance imaging studies 

that showed distinct signal abnormalities in the acute, subacute, and chronic stages following 

hypoxic-ischemic encephalopathy (see [34] for a review). Thus, our EEG results obtained 

within 48 hours after CA index the progression of acute effects of anoxia on the brain, 

whereas they might not provide information of subacute and chronic processes that contribute 

to the final outcome. In addition, the neural structures involved in generating the MMN are 

not exclusively limited to processing auditory signals. Instead, the MMN is thought to be a 

consequence of predictive brain function to be found in any sensory modality (e.g. 

somatosensory: [35-38]; visual: [39-41]; across modalities: [42-44]) as suggested by both 

modality-specific and -unspecific neural correlates identified in healthy subjects [45]. In 

patients, it remains currently unknown whether progression of, e.g. somatosensory 
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discrimination would show comparable predictive power as for the current results obtained 

for auditory stimulation - in particular, when considering that absence of cortical 

somatosensory responses (i.e. SSEPs) are indicative of poor outcome [5]. Future studies 

including MMN paradigms across sensory modalities will elucidate the potential mechanism 

underlying the generation of a violation detection response in these patients. 

 

4.4. Limitations and outlook 

Although our results were obtained in a blinded fashion to the clinicians responsible for 

end-of-life decisions, thus ruling out a contribution of self-fulfilling prophecy, we cannot 

exclude that end-of-life decisions affected the overall results – in particular, regarding three 

patients showing an increase with poor outcome later on (i.e. false positives). Our current 

results represent therefore a conservative estimation of the ‘true’ PPV of the proposed 

method. EEG reactivity seems already very robust in the present cohort in terms of sensitivity 

towards prediction of good outcome and the improvement of auditory discrimination seems 

basically to raise its specificity (at cost of sensitivity). One future possibility for improving 

the overall predictive power of our approach is considering progression of auditory 

discrimination alongside other qualitative prognostic marker of negative outcome prediction 

[5].  
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Figure 1: Average decoding performance across all patients (n=60, left panel) and for the reduced 

sample of patients without epileptiform features (n=46, right panel), split according to their outcome 

(Survivors, Non-Survivors). Black bars refer to the area under the curve (AUC) values obtained for the 

first day recording (Day 1) under TTM 36 and grey bars refer to AUC values of the second day 

recording (Day 2) after withdrawal of temperature control. Decoding performance corresponds to 

average AUC values for decoding EEG responses to standard versus three types of deviant sounds 

evaluated for each patient/recording separately. 
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Figure 2: Outcome prediction results across all patients (n=60, left panel) and the reduced sample of 

patients without epileptiform features (n=46 right panel), split according to patients’ outcome 

(Survivors, Non-Survivors). Circles refer to the percentage change in decoding performance for 

individual patients from Day 1 under TTM 36 to Day 2 without temperature control. AUC: area under 

the curve. 

 

  



COMA-OUTCOME NORMOTHERMIA 20 

Table 1: Prognostic value for good outcome for patients of the present study treated with TTM 36 and 

for patients from a previous study treated with TTM 33 [10]. Results are shown separately for 

analyses across all patients and across subgroup of patients without epileptiform features. Values 

above chance level are highlighted in red. 

TTM 36 Sample TTM 33 Sample 

(Tzovara et al. 2016) 

All Patients 

n = 60 

No 

Epileptiform 

Features 

n = 46 

All Patients 

n = 94 

No 

Epileptiform 

Features 

n = 73 

Positive Predictive Value 

(95%CI) 

0.68 

(0.46-0.85) 

0.83 

(0.59-0.96) 

0.82 

(0.65-0.93) 

0.93 

(0.77-0.99) 

Sensitivity 

(95%CI) 

0.50 

(0.32-0.68) 

0.48 

(0.30-0.67) 

0.48 

(0.35-0.62) 

0.50 

(0.36-0.64) 

Specificity 

(95%CI) 

0.69 

(0.48-0.86) 

0.80 

(0.52-0.96) 

0.84 

(0.69-0.94) 

0.89 

(0.67-0.99) 

Negative Predictive Value 

(95%CI) 

0.51 

(0.34-0.69) 

0.43 

(0.24-0.63) 

0.52 

(0.39-0.65) 

0.39 

(0.24-0.55) 

Accuracy 

(95%CI) 

0.58 

(0.38-0.63) 

0.59 

(0.33-0.59) 

0.63 

(0.41-0.60) 

0.60 

(0.35-0.55) 
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Table 2: Clinical description of Survivors (n = 34), split according to whether from Day 1 to Day 2 their 

decoding performance increased or decreased.  

Survivors with 

Increase, n = 17 

Survivors with 

Decrease, n = 17 

Female gender, No (%) 3 / 17 (18%) 5 / 17 (29%) 

Age, yr mean ± SD (range) 64 ± 13 (36-83) 69 ± 12 (51-86) 

Time to ROSC, min mean ± SD (range) 21 ± 12 (8-50) 30 ± 43 (3-180) 

Non cardiac etiology, No (%) 5 / 17 (29%) 5 / 17 (29%) 

Absent Pupillary reflex, No (%) 1 / 17 (6%) 0 / 17 (0%) 

Absent Corneal reflex, No (%) 3 / 17 (18%) 3 / 17 (18%) 

Absent Motor response, No (%) 4 / 17 (24%) 3 / 17 (18%) 

Early myoclonus, No (%) 0 / 17 (0%) 1 / 17 (6%) 

First EEG: Unreactive background, No (%) 1 / 17 (6%) 4 / 16 (25%) 

Missing: 1 

First EEG: Discontinuous EEG, No (%) 3 / 17 (18%) 8 / 16 (50%) 

Missing: 1 

First EEG: Epileptiform EEG, No (%) 0 / 17 (0%) 0 / 16 (0%) 

Missing: 1 

Second EEG: Unreactive background, No (%) 0 / 14 (0%) 

Missing: 3 

0 / 16 (0%) 

Missing: 1 

Second EEG: Discontinuous EEG, No (%) 1 / 14 (7%) 

Missing: 3 

0 / 16 (0%) 

Missing: 1 

Second EEG: Epileptiform EEG, No (%) 2 / 14 (14%) 

Missing: 3 

1 / 16 (6%) 

Missing: 1 

Bilaterally absent N20 on the SSEP, No (%) 0 / 9 (0%) 

Missing: 8 

0 / 14 (0%) 

Missing: 3 

NSE, median μg/l, SD (range) 24 ± 10 (15-52) 22 ± 17 (13-59) 
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NSE > 75 μg/l, No (%) 0 / 11 (0%) 

Missing: 6 

0 / 11 (0%) 

Missing: 6 

Time to first EEG, h mean ± SD (range) 20 ± 7 (9-36) 21 ± 10 (8-46) 

Time between recordings, h mean ± SD (range) 25 ± 7 (18-46) 23 ± 9 (6-48) 
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Table 3: Clinical description of Non-Survivors (n = 26), split according to whether from Day 1 to Day 2 

their decoding performance increased or decreased. 

Non-Survivors with 

Increase, n = 8 

Non-Survivors with 

Decrease, n = 18 

Female gender, No (%) 3 / 8 (38%) 6 / 18 (33%) 

Age, yr mean ± SD (range) 72 ± 13 (46-84) 65 ± 12 (45-86) 

Time to ROSC, min mean ± SD (range) 25 ± 12 (5-40) 24 ± 9 (15-50) 

Non cardiac etiology, No (%) 1 / 8 (12%) 4 / 16 (25%) 

Missing: 2 

Absent Pupillary reflex, No (%) 3 / 7 (43%) 

Missing: 1 

4 / 17 (24%) 

Missing: 1 

Absent Corneal reflex, No (%) 6 / 7 (86%) 

Missing: 1 

11 / 17 (65%) 

Missing: 1 

Absent Motor response, No (%) 7 / 7 (100%) 

Missing: 1 

15 / 17 (88%) 

Missing: 1 

Early myoclonus, No (%) 2 / 7 (29%) 

Missing: 1 

9 / 17 (53%) 

Missing: 1 

First EEG: Unreactive background, No (%) 6 / 7 (86%) 

Missing: 1 

16 / 18 (89%) 

First EEG: Discontinuous EEG, No (%) 6 / 7 (86%) 

Missing: 1 

15 / 18 (83%) 

First EEG: Epileptiform EEG, No (%) 5 / 7 (71%) 

Missing: 1 

5 / 18 (28%) 

Second EEG: Unreactive background, No (%) 5 / 6 (83%) 

Missing: 2 

10 / 16 (62%) 

Missing: 2 

Second EEG: Discontinuous EEG, No (%) 3 / 6 (50%) 

Missing: 2 

8 / 16 (50%) 

Missing: 2 

Second EEG: Epileptiform EEG, No (%) 2 / 6 (33%) 

Missing: 2 

6 / 16 (38%) 

Missing: 2 

Bilaterally absent N20 on the SSEP, No (%) 3 / 5 (60%) 

Missing: 3 

7 / 11 (64%) 

Missing: 7 
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NSE, median μg/l, SD (range) 87 ± 261 (20-583) 98 ± 144 (30-414) 

NSE > 75 μg/l, No (%) 2 / 4 (50%) 

Missing: 4 

5 / 8 (62%) 

Missing: 10 

Time to first EEG, h mean ± SD (range) 20 ± 6 (10-24) 22 ±11 (6-48) 

Time between recordings, h mean ± SD (range) 24 ± 4 (19-30) 26 ± 11 (18-64) 
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