34 research outputs found

    The Effects of Overexpression of Histamine Releasing Factor (HRF) in a Transgenic Mouse Model

    Get PDF
    Asthma is a disease that affects all ages, races and ethnic groups. Its incidence is increasing both in Westernized countries and underdeveloped countries. It involves inflammation, genetics and environment and therefore, proteins that exacerbate the asthmatic, allergic phenotype are important. Our laboratory purified and cloned a histamine releasing factor (HRF) that was a complete stimulus for histamine and IL-4 secretion from a subpopulation of allergic donors' basophils. Throughout the course of studying HRF, it was uncovered that HRF enhances or primes histamine release and IL-13 production from all anti-IgE antibody stimulated basophils. In order to further delineate the biology of HRF, we generated a mouse model.We constructed an inducible transgenic mouse model with HRF targeted to lung epithelial cells, via the Clara cells. In antigen naΓ―ve mice, overproduction of HRF yielded increases in BAL macrophages and statistical increases in mRNA levels for MCP-1 in the HRF transgenic mice compared to littermate controls. In addition to demonstrating intracellular HRF in the lung epithelial cells, we have also been able to document HRF's presence extracellularly in the BAL fluid of these transgenic mice. Furthermore, in the OVA challenged model, we show that HRF exacerbates the allergic, asthmatic responses. We found statistically significant increases in serum and BAL IgE, IL-4 protein and eosinophils in transgenic mice compared to controls.This mouse model demonstrates that HRF expression enhances allergic, asthmatic inflammation and can now be used as a tool to further dissect the biology of HRF

    Proton Pump Inhibitors Exert Anti-Allergic Effects by Reducing TCTP Secretion

    Get PDF
    BACKGROUND:Extracellular translationally controlled tumor protein (TCTP) is known to play a role in human allergic responses. TCTP has been identified outside of macrophages, in activated mononuclear cells, and in biological fluids from allergic patients. Even TCTP devoid of signal sequences, is secreted to extracellular environment by an yet undefined mechanism. This study is aimed at understanding the mechanism of TCTP release and its regulation. A secondary goal is to see if inhibitors of TCTP release can serve as potential anti-allergic asthmatic drugs. METHODOLOGY/PRINCIPAL FINDINGS:Using Western blotting assay in HEK293 and U937 cells, we found that TCTP secretion is reduced by omeprazole and pantoprazole, both of which are proton pump inhibitors. We then transfected HEK293 cells with proton pump expression vectors to search for the effects of exogeneously overexpressed H(+)/K(+)-ATPase on the TCTP secretion. Based on these in vitro data we checked the in vivo effects of pantoprazole in a murine model of ovalbumin-induced allergy. Omeprazole and pantoprazole reduced TCTP secretion from HEK293 and U937 cells in a concentration-dependent fashion and the secretion of TCTP from HEK293 cells increased when they over-expressed H(+)/K(+)-ATPase. In a murine model of ovalbumin-induced allergy, pretreatment with pantoprazole reduced infiltration of inflammatory cells, increased goblet cells, and increased TCTP secretion induced by OVA challenge. CONCLUSION:Since Omeprazole and pantoprazole decrease the secretion of TCTP which is associated with the development of allergic reaction, they may have the potential to serve as anti-allergic (asthmatic) drugs

    Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells

    Get PDF
    Breast and ovarian cancer are two of the leading causes of cancer deaths among women in the United States. Overexpression of the HER2/neu oncoprotein has been reported in patients affected with breast and ovarian cancers, and is associated with poor prognosis. To develop a novel targeted therapy for HER2/neu expressing tumors, we have constructed a fully human IgE with the variable regions of the scFv C6MH3-B1 specific for HER2/neu. This antibody was expressed in murine myeloma cells and was properly assembled and secreted. The Fc region of this antibody triggers in vitro degranulation of rat basophilic cells expressing human FcΞ΅RI (RBL SX-38) in the presence of murine mammary carcinoma cells that express human HER2/neu (D2F2/E2), but not the shed (soluble) antigen (ECDHER2) alone. This IgE is also capable of inducing passive cutaneous anaphylaxis in a human FcΞ΅RIΞ± transgenic mouse model, in the presence of a cross-linking antibody, but not in the presence of soluble ECDHER2. Additionally, IgE enhances antigen presentation in human dendritic cells and facilitates cross-priming, suggesting that the antibody is able to stimulate a secondary T-cell anti-tumor response. Furthermore, we show that this IgE significantly prolongs survival of human FcΞ΅RIΞ± transgenic mice bearing D2F2/E2 tumors. We also report that the anti-HER2/neu IgE is well tolerated in a preliminary study conducted in Macaca fascicularis (cynomolgus) monkeys. In summary, our results suggest that this IgE should be further explored as a potential therapeutic against HER2/neu overexpressing tumors, such as breast and ovarian cancers.Fil: Daniels, Tracy R.. University of California at Los Angeles; Estados UnidosFil: Leuchter, Richard K.. University of California at Los Angeles; Estados UnidosFil: Quintero, Rafaela. University of California; Estados UnidosFil: Helguera, Gustavo Fernando. University of California at Los Angeles; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓ­mica; Argentina. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; ArgentinaFil: RodrΓ­guez, JosΓ© A.. University of California at Los Angeles; Estados UnidosFil: MartΓ­nez Maza, Otoniel. University of California at Los Angeles; Estados UnidosFil: Schultes, Birgit C.. Advanced Immune Therapeutics, Inc.; Estados Unidos. Momenta Pharmaceuticals, Inc.; Estados UnidosFil: Nicodemus, Christopher F.. Advanced Immune Therapeutics, Inc.; Estados UnidosFil: Penichet, Manuel L.. University of California at Los Angeles; Estados Unido

    A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    Get PDF
    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 andCD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa.Fil: Daniels-Wells, Tracy R. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica;Fil: Helguera, Gustavo Fernando. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Departamento de Tecnologia Farmaceutica; Argentina; University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica;Fil: Leuchter, Richard K. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica;Fil: Quintero, Rafael. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica;Fil: Kozman, Maggie. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica;Fil: RodrΓ­guez, JosΓ© A.. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica; University of California. The Molecular Biology Institute; Estados Unidos de AmΓ©rica;Fil: Ortiz-SΓ‘nchez, E. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica; Biomedical Research in Cancer. Basic Research Division. National Institute of Cancerology; Mexico.;Fil: MartΓ­nez-Maza, Otonel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica;Fil: Schultes, Brigit C.. Advanced Immune Therapeutics; Estados Unidos de AmΓ©rica;Fil: Nicodemus Christopher. Advanced Immune Therapeutics; Estados Unidos de AmΓ©rica;Fil: Penichet, Manuel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de AmΓ©rica; University of California. The Molecular Biology Institute; Estados Unidos de AmΓ©rica

    Brown Spider (Loxosceles genus) Venom Toxins: Tools for Biological Purposes

    Get PDF
    Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins

    Expression of immunoglobulin E-dependent histamine-releasing factor in idiopathic nephrotic syndrome of childhood

    No full text
    Concanavarin-A (conA)-stimulated peripheral blood mononuclear cells (PBMNC) from patients with idiopathic nephrotic syndrome (INS) produce putative factors that increase vascular permeability. These factors are expressed in the nephrotic phase but are reduced in the convalescent phase. To identify the genes that are expressed only in the nephrotic phase, we performed cDNA subtraction using conA-stimulated PBMNC from three patients with INS. We isolated several gene transcripts in all three subtracted cDNA libraries. Among these genes, IgE-dependent histamine-releasing factor (HRF) was overexpressed in the nephrotic phase not only at the mRNA level but also at the protein level in another 10 patients with INS. Moreover, we found increased secretion of HRF from conA-stimulated PBMNC in the nephrotic phase. The results suggest that HRF is involved in the pathogenesis of idiopathic nephrotic syndrome
    corecore