21 research outputs found

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Governance of the private healthcare sector in low- and middle-income countries: a scoping review of approaches, effectiveness, and enablers

    Get PDF
    Sophie Witter - ORCID: 0000-0002-7656-6188 https://orcid.org/0000-0002-7656-6188The private sector’s role in healthcare is growing across many settings. However, the sector remains under-governed in many contexts, particularly in low- and middle income countries. Further, the understanding of the evidence base relating to private sector governance remains inadequate, with limited information available on the effectiveness of various approaches, and factors which facilitate or hinder their functioning. This scoping review was commissioned by the World Health Organization (WHO) to address this gap by synthesising the available literature on the governance of private healthcare financing and delivery.https://www.who.int/publications/i/item/9789240093522pubpu

    T11 target structure exerts effector function by activating immune cells in CNS against glioma where cytokine modulation provide favorable microenvironment

    No full text
    879-888Glycoprotein T 11 target structure (T11TS), derived from sheep erythrocyte membrane, directly interacts with T cells to activate them to enter in the brain. When untreated, glioma exerts an immune-suppressive environment in its vicinity by secreting prostaglandin E2 (PGE2), IL-10, tumor growth factor , gangliosides etc. to dampen the immune attack. But exogenous administration of T11TS reverses the situation to pro-inflammatory immune active state by expressing enhanced IL-12 and tumor necrosis factor (TNF-) production and suppression of IL-4 and IL-10 levels. The T11TS activated lymphocytic accumulation along the capillary endothelium in brain and their penetration in the matrix was evident from histological sections. IL-6 with TNF- facilitates leukocyte migration to glioma site to exert cytotoxic effector function. Brain infiltrated lymphocytes offer cytotoxic proximity to neoplastic glial cells, which lead them to apoptosis. In the Th1 dominated microenvironment microglial cells was found with enhanced phagocytic functions. Initially infiltrated lymphocytes with microglia showed increased production of TNF-, interferon (IFN-) to facilitate their effector actions. Repeated dosing of T11TS shows glioma abrogation in rat model, but also a resurgence of anti-inflammatory cytokine environment found with increased IL-4, IL-10 and decreased IL-12, IL-6, TNF-. This is a unique homeostatic regulation of total immune system after T11TS mediated carnage of glioma. The resultant balance of cytokines between interacting glioma cells, T cells and microglia in T11TS induced condition determines the success of its immunotherapeutic effect in glioma
    corecore