49 research outputs found

    A high-performance matrix-matrix multiplication methodology for CPU and GPU architectures

    Get PDF
    Current compilers cannot generate code that can compete with hand-tuned code in efficiency, even for a simple kernel like matrix–matrix multiplication (MMM). A key step in program optimization is the estimation of optimal values for parameters such as tile sizes and number of levels of tiling. The scheduling parameter values selection is a very difficult and time-consuming task, since parameter values depend on each other; this is why they are found by using searching methods and empirical techniques. To overcome this problem, the scheduling sub-problems must be optimized together, as one problem and not separately. In this paper, an MMM methodology is presented where the optimum scheduling parameters are found by decreasing the search space theoretically, while the major scheduling sub-problems are addressed together as one problem and not separately according to the hardware architecture parameters and input size; for different hardware architecture parameters and/or input sizes, a different implementation is produced. This is achieved by fully exploiting the software characteristics (e.g., data reuse) and hardware architecture parameters (e.g., data caches sizes and associativities), giving high-quality solutions and a smaller search space. This methodology refers to a wide range of CPU and GPU architectures

    Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARα Mediated Mechanism

    Get PDF
    Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Ultra thin silicon wafer slicing using wire-EDM for solar cell application

    No full text
    The ever increasing demand of silicon solar cells in PV industry calls for minimizing the material loses (kerf) during Si wafer slicing. The currently employed abrasive slicing methods are capable of slicing similar to 350 mu m thick wafers. Recent research efforts have put forward wire-EDM as a potential method. This work presents an extensive experimentation to understand the parametric effects that give ultra thin wafer while minimizing the kerf-loss and maximizing the slicing rate. Ultra thin wafers of size 130-150 mu m were fabricated using wire-EDM while controlling the input energy by avoiding wire or wafer breakage. The kerf-loss was reduced by similar to 50% (121 mu m) while maintaining a high slicing rate of 1.05 mm/min. A typical wafer and associated kerf profiles showed a wider thickness at the entry and exit than the middle of the wafer. An increase in open voltage and a decrease in servo voltage increase the slicing rate in frontal direction and cause a decrease in slicing rate in the lateral direction, consequently decreasing the kerf-loss. (C) 2017 Elsevier Ltd. All rights reserved

    Models for predicting temperature dependence of material properties of aluminum

    No full text
    A number of processes such as laser ablation, laser welding, electric discharge machining, etc involve high temperatures. Most of the processes involve temperatures much higher than the target melting and normal boiling point. Such large variation in target temperature causes a significant variation in its material properties. Due to the unavailability of experimental data on material properties at elevated temperatures, usually the data at lower temperatures is often erroneously extrapolated during modelling of these processes. Therefore, this paper attempts to evaluate the variation in material properties with temperature using some general and empirical theories, along with the available experimental data for aluminum. The evaluated properties of Al using the proposed models show a significant variation with temperature. Between room temperature and near-critical temperature (0.9T(c)), surface reflectivity of Al varies from more than 90% to less than 50%, absorption coefficient decreases by a factor of 7, thermal conductivity decreases by a factor of 5, density decreases by a factor of 4, specific heat and latent heat of vapourization vary by a factor between 1.5 and 2. Applying these temperature-dependent material properties for modelling laser ablation suggest that optical properties have a greater influence on the process than thermophysical properties. The numerical predictions of the phase explosion threshold in laser ablation are within 5% of the experimental values

    Analytical Simulation of Random Textures Generated in Electrical Discharge Texturing

    No full text
    Textured functional surfaces are finding applications in the fields of bioengineering, surface energy, hydrodynamics, lubrication, and optics. Electrical discharge machining (EDM), which is normally used to generate smoother surface finish on various automotive components and toolings, can also generate surfaces of rough finish, a desirable characteristic for texturing purposes. There is a lack of modeling efforts to predict the surface textures obtained under various EDM operating conditions. The aim of the current work is to capture the physics of the electrical discharge texturing (EDT) on a surface assuming random generation of multiple sparks with respect to (i) space, (ii) time, and (iii) energy. A uniform heat disk assumption is taken for each individual spark. The three-dimensional (3D) texture generated is utilized to evaluate a 3D roughness parameter namely arithmetic mean height, S-a. Surface textures obtained from, the model are validated against experimentally obtained ones by comparison of distribution of R-a values taken along parallel sections along the surface. It was found that the distribution of simulated R-a values agrees with that of experimental R-a values

    A finite element model to predict the ablation depth in pulsed laser ablation

    No full text
    This work presents development of a two-dimensional finite element model to predict temperature distribution and ablation depth in a laser ablation process. The model considers a number of aspects of the process, which hitherto have been considered independently in the literature. The aspects considered include: temperature dependent material properties of the target material, effect of plasma shielding on the incident laser flux, and temperature dependent absorptivity and absorption coefficient of the target. It was evident that these considerations have resulted in a significant improvement in the ability of the model to predict the ablation depth. Finally, the predicted ablation depth was found to match extremely well with experimental results at lower laser fluences, though at higher fluences there is a marginal overestimation.

    A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding

    No full text
    Laser ablation of metals using nanosecond pulses occurs mainly due to vaporization. However, at high fluences, when the target is heated close to its critical temperature, phase explosion also occurs due to homogeneous nucleation. Due to a wide variation in target temperature, the material properties also show a considerable variation. In this paper, a model of laser ablation is presented that considers vaporization and phase explosion as mechanisms of material removal and also accounts for the variation in material properties up to critical temperature using some general and empirical theories. In addition, plasma shielding due to inverse bremsstrahlung and photo-ionization is considered. The model predicts accurately (within 5 %) the phase explosion threshold fluence of Al. The predictions of ablation depth by the model are in reasonable agreement with experimental measurements at low fluences. Whereas, the degree of error marginally increases at high laser fluences
    corecore