50 research outputs found

    Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis

    Get PDF
    Background: Impaired signaling in the IFN-g/IL-12 pathway causes susceptibility to severe disseminated infections with mycobacteria and dimorphic yeasts. Dominant gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis. Objective: We sought to identify the molecular defect in patients with disseminated dimorphic yeast infections. Methods: PBMCs, EBV-transformed B cells, and transfected U3A cell lines were studied for IFN-g/IL-12 pathway function. STAT1 was sequenced in probands and available relatives. Interferon-induced STAT1 phosphorylation, transcriptional responses, protein-protein interactions, target gene activation, and function were investigated. Results: We identified 5 patients with disseminated Coccidioides immitis or Histoplasma capsulatum with heterozygous missense mutations in the STAT1 coiled-coil or DNA-binding domains. These are dominant gain-of-function mutations causing enhanced STAT1 phosphorylation, delayed dephosphorylation, enhanced DNA binding and transactivation, and enhanced interaction with protein inhibitor of activated STAT1. The mutations caused enhanced IFN-g–induced gene expression, but we found impaired responses to IFN-g restimulation. Conclusion: Gain-of-function mutations in STAT1 predispose to invasive, severe, disseminated dimorphic yeast infections, likely through aberrant regulation of IFN-g–mediated inflammationFil: Sampaio, Elizabeth P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz. Laboratorio de Leprologia; BrasilFil: Hsu, Amy P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Pechacek, Joseph. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Hannelore I.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Erasmus Medical Center. Department of Medical Microbiology and Infectious Disease; Países BajosFil: Dias, Dalton L.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Paulson, Michelle L.. Clinical Research Directorate/CMRP; Estados UnidosFil: Chandrasekaran, Prabha. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Rosen, Lindsey B.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Carvalho, Daniel S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz, Laboratorio de Leprologia; BrasilFil: Ding, Li. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Vinh, Donald C.. McGill University Health Centre. Division of Infectious Diseases; CanadáFil: Browne, Sarah K.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Datta, Shrimati. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Milner, Joshua D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Kuhns, Douglas B.. Clinical Services Program; Estados UnidosFil: Long Priel, Debra A.. Clinical Services Program; Estados UnidosFil: Sadat, Mohammed A.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses. Infectious Diseases Susceptibility Unit; Estados UnidosFil: Shiloh, Michael. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: De Marco, Brendan. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Alvares, Michael. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Gillman, Jason W.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Ramarathnam, Vivek. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: de la Morena, Maite. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moreira, Ileana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; ArgentinaFil: Uzel, Gulbu. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Johnson, Daniel. University of Chicago. Comer Children; Estados UnidosFil: Spalding, Christine. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Zerbe, Christa S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Wiley, Henry. National Eye Institute. Clinical Trials Branch; Estados UnidosFil: Greenberg, David E.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Hoover, Susan E.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Rosenzweig, Sergio D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses Infectious Diseases Susceptibility Unit; Estados Unidos. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Primary Immunodeficiency Clinic; Estados UnidosFil: Galgiani, John N.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Holland, Steven M.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unido

    Attending to warning signs of primary immunodeficiencies disease across the range of clinical practices

    Get PDF
    Purpose: Patients with primary immunodeficiency diseases (PIDD) may present with recurrent infections affecting different organs, organ-specific inflammation/autoimmunity, and also increased cancer risk, particularly hematopoietic malignancies. The diversity of PIDD and the wide age range over which these clinical occurrences become apparent often make the identification of patients difficult for physicians other than immunologists. The aim of this report is to develop a tool for educative programs targeted to specialists and applied by clinical immunologists. Methods: Considering the data from national surveys and clinical reports of experiences with specific PIDD patients, an evidence-based list of symptoms, signs, and corresponding laboratory tests were elaborated to help physicians other than immunologists look for PIDD. Results: Tables including main clinical manifestations, restricted immunological evaluation, and possible related diagnosis were organized for general practitioners and 5 specialties. Tables include information on specific warning signs of PIDD for pulmonologists, gastroenterologists, dermatologists, hematologists, and infectious disease specialists. Conclusions: This report provides clinical immunologists with an instrument they can use to introduce specialists in other areas of medicine to the warning signs of PIDD and increase early diagnosis. Educational programs should be developed attending the needs of each specialty.Fil: Costa Carvalho, Beatriz Tavares. Universidade Federal de São Paulo; BrasilFil: Sevciovic Grumach, Anete. Fundação ABC. Faculdade de Medicina; BrasilFil: Franco, José Luis. Universidad de Antioquia; ColombiaFil: Espinosa Rosales, Francisco Javier. Instituto Nacional de Pediatría. Unidad de Investigación en Inmunodeficiencias; MéxicoFil: Leiva, Lily E.. State University of Louisiana; Estados UnidosFil: King, Alejandra. Hospital de Niños Doctor Luis Calvo Mackenna. Unidad de Inmunología; ChileFil: Porras, Oscar. Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”; Costa RicaFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oleastro, Mathias. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Sorensen, Ricardo U.. State University of Louisiana; Estados Unidos. Universidad de La Frontera. Facultad de Medicina; MéxicoFil: Condino Neto, Antonio. Universidade de Sao Paulo; Brasi

    Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal alpha-toxin

    Get PDF
    The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor kappa B signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor alpha-toxin. Naturally elicited antibodies against alpha-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to alpha-toxin in nonleukocytic cells.Peer reviewe

    Controlo químico de infestantes

    Get PDF
    Uma planta é considerada infestante quando nasce espontaneamente num local e momento indesejados, podendo interferir negativamente com a cultura instalada. As infestantes competem com as culturas para o espaço, a luz, água e nutrientes, podendo atrasar e prejudicar as operações de colheita, depreciar o produto final e assegurarem a reinfestação nas culturas seguintes. Dado o modo de propagação diferenciado das diversas espécies de infestantes, com as anuais a propagarem-se por semente e as perenes ou vivazes a assegurarem a sua propagação através de órgãos vegetativos (rizomas, bolbos, tubérculos, etc.), assim, também o seu controlo quer químico, quer mecânico terá que ser diferenciado, ou seja, para controlar infestantes anuais será suficiente destruir a sua parte aérea, enquanto para controlar infestantes perenes teremos que destruir os seus órgãos reprodutivos. O controlo de infestantes poderá ser químico, através da utilização de herbicidas, ou mecânico pela utilização de alfaias agrícolas, tais como a charrua de aivecas, a charrua de discos, a grade de discos, o escarificador e a fresa. Quando a técnica utilizada na instalação das culturas é a sementeira directa, o controlo das infestantes terá que ser obrigatoriamente químico, enquanto se o recurso à mobilização do solo for a técnica mais utilizada (sistema de mobilização tradicional ou sistema de mobilização reduzida), o controlo das infestantes tanto poderá ser químico como mecânico. Neste trabalho iremos abordar apenas, o controlo químico de infestantes

    Patients with primary immunodeficiencies are a reservoir of poliovirus and a risk to polio eradication

    Get PDF
    ABSTARCT: Immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) have been isolated from primary immunodeficiency (PID) patients exposed to oral poliovirus vaccine (OPV). Patients may excrete poliovirus strains for months or years; the excreted viruses are frequently highly divergent from the parental OPV and have been shown to be as neurovirulent as wild virus. Thus, these patients represent a potential reservoir for transmission of neurovirulent polioviruses in the post-eradication era. In support of WHO recommendations to better estimate the prevalence of poliovirus excreters among PIDs and characterize genetic evolution of these strains, 635 patients including 570 with primary antibody deficiencies and 65 combined immunodeficiencies were studied from 13 OPV-using countries. Two stool samples were collected over 4 days, tested for enterovirus, and the poliovirus positive samples were sequenced. Thirteen patients (2%) excreted polioviruses, most for less than 2 months following identification of infection. Five (0.8%) were classified as iVDPVs (only in combined immunodeficiencies and mostly poliovirus serotype 2). Non-polio enteroviruses were detected in 30 patients (4.7%). Patients with combined immunodeficiencies had increased risk of delayed poliovirus clearance compared to primary antibody deficiencies. Usually, iVDPV was detected in subjects with combined immunodeficiencies in a short period of time after OPV exposure, most for less than 6 months. Surveillance for poliovirus excretion among PID patients should be reinforced until polio eradication is certified and the use of OPV is stopped. Survival rates among PID patients are improving in lower and middle income countries, and iVDPV excreters are identified more frequently. Antivirals or enhanced immunotherapies presently in development represent the only potential means to manage the treatment of prolonged excreters and the risk they present to the polio endgame. Keywords: Poliovirus eradication, Immunodeficiency-associated vaccine-derived polioviruses, Oral poliovirus vaccine, Humoral immunodeficiency, Combined immunodeficiency, Primary immunodeficienc

    II Brazilian Consensus on the use of human immunoglobulin in patients with primary immunodeficiencies

    Full text link

    Guidelines for the use of human immunoglobulin therapy in patients with primary immunodeficiencies in Latin America

    No full text
    Antibodies are an essential component of the adaptative immune response and hold long-term memory of the immunological experiences throughout life. Antibody defects represent approximately half of the well-known primary immunodeficiencies requiring immunoglobulin replacement therapy. in this article, the authors review the current indications and therapeutic protocols in the Latin American environment. Immunoglobulin replacement therapy has been a safe procedure that induces dramatic positive changes in the clinical outcome of patients who carry antibody defects. (C) 2012 SEICAP Published by Elsevier Espana, S.L. All rights reserved.Univ São Paulo, Inst Biomed Sci, Dept Immunol, São Paulo, BrazilUniversidade Federal de São Paulo, Sch Med, Dept Pediat, São Paulo, BrazilFac Med ABC, Dept Med, São Paulo, BrazilHosp Ninos Luis Calvo Mackenna, Santiago, ChileHosp Ninos Dr Ricardo Gutierrez, Immunol Grp, Buenos Aires, DF, ArgentinaHosp Juan P Garrahan, Div Immunol, Buenos Aires, DF, ArgentinaLouisiana State Univ, Hlth Sci Ctr, Dept Pediat, New Orleans, LA USAHosp Nacl Ninos Dr Carlos Saenz Herrera, San Jose, Costa RicaInst Nacl Pediat, Unidad Invest Inmunodeficiencias, Mexico City, DF, MexicoUniv Antioquia, Primary Immunodeficiencies Grp, Medellin, ColombiaUniv La Frontera, Fac Med, Temuco, ChileUniversidade Federal de São Paulo, Sch Med, Dept Pediat, São Paulo, BrazilWeb of Scienc
    corecore