352 research outputs found
Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds
Although extensive data exist on avian influenza in wild birds in North America, limited information is available from elsewhere, including Europe. Here, molecular diagnostic tools were employed for high-throughput surveillance of migratory birds, as an alternative to classical labor-intensive methods of virus isolation in eggs. This study included 36,809 samples from 323 bird species belonging to 18 orders, of which only 25 species of three orders were positive for influenza A virus. Information on species, locations, and timing is provided for all samples tested. Seven previously unknown host species for avian influenza virus were identified: barnacle goose, bean goose, brent goose, pink-footed goose, bewick's swan, common gull, and guillemot. Dabbling ducks were more frequently infected than other ducks and Anseriformes; this distinction was probably related to bird behavior rather than population sizes. Waders did not appear to play a role in the epidemiology of avian influenza in Europe, in contrast to the Americas. The high virus prevalence in ducks in Europe in spring as compared with North America could explain the differences in virus-host ecology between these continents. Most influenza A virus subtypes were detected in ducks, but H13 and H16 subtypes were detected primarily in gulls. Viruses of subtype H6 were more promiscuous in host range than other subtypes. Temporal and spatial variation in influenza virus prevalence in wild birds was observed, with influenza A virus prevalence varying by sampling location; this is probably related to migration patterns from northeast to southwest and a higher prevalence farther north along the flyways. We discuss the ecology and epidemiology of avian influenza A virus in wild birds in relation to host ecology and compare our results with published studies. These data are useful for designing new surveillance programs and are particularly relevant due to increased interest in avian influenza in wild birds
New-Onset Atrial Fibrillation Predicts Long-Term Mortality After Coronary Artery Bypass Graft
ObjectivesWe sought to investigate the association between new-onset atrial fibrillation after coronary artery bypass graft (CABG) (post-operative atrial fibrillation [POAF]) and long-term mortality in patients with no history of atrial fibrillation.BackgroundPOAF predicts longer hospital stay and greater post-operative mortality.MethodsA total of 16,169 consecutive patients with no history of AF who underwent isolated CABG at our institution between January 1, 1996, and December 31, 2007, were included in the study. All-cause mortality data were obtained from Social Security Administration death records. A multivariable Cox proportional hazards regression model was constructed to determine the independent impact of new-onset POAF on long-term survival after adjusting for several covariates. The covariates included age, sex, race, pre-operative risk factors (ejection fraction, New York Heart Association functional class, history of myocardial infarction, index myocardial infarction, stroke, chronic obstructive pulmonary disease, peripheral arterial disease, smoking, diabetes, renal failure, hypertension, dyslipidemia, creatinine level, dialysis, redo surgery, elective versus emergent CABG, any valvular disorder) and post-operative adverse events (stroke, myocardial infarction, acute respiratory distress syndrome, and renal failure), and discharge cardiac medications known to affect survival in patients with coronary disease.ResultsNew-onset AF occurred in 2,985 (18.5%) patients undergoing CABG. POAF independently predicted long-term mortality (hazard ratio: 1.21; 95% confidence interval: 1.12 to 1.32) during a mean follow-up of 6 years (range 0 to 12.5 years). This association remained true after excluding from the analysis those patients who died in-hospital after surgery (hazard ratio: 1.21; 95% confidence interval: 1.11 to 1.32). Patients with POAF discharged on warfarin experienced reduced mortality during follow-up.ConclusionsIn this large cohort of patients, POAF predicted long-term mortality. Warfarin anticoagulation may improve survival in POAF
Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1)
Some duck species are potential long-distance vectors; others are more likely to function as sentinels
First Results from the AMoRE-Pilot neutrinoless double beta decay experiment
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search
for neutrinoless double beta decay (0) of Mo with
100 kg of Mo-enriched molybdenum embedded in cryogenic detectors
with a dual heat and light readout. At the current, pilot stage of the AMoRE
project we employ six calcium molybdate crystals with a total mass of 1.9 kg,
produced from Ca-depleted calcium and Mo-enriched molybdenum
(CaMoO). The simultaneous detection of
heat(phonon) and scintillation (photon) signals is realized with high
resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin
temperatures. This stage of the project is carried out in the Yangyang
underground laboratory at a depth of 700 m. We report first results from the
AMoRE-Pilot search with a 111 kgd live exposure of
CaMoO crystals. No evidence for
decay of Mo is found, and a upper limit is set for the
half-life of 0 of Mo of y at 90% C.L.. This limit corresponds to an effective
Majorana neutrino mass limit in the range eV
Salmonella Strains Isolated from Galápagos Iguanas Show Spatial Structuring of Serovar and Genomic Diversity
It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome
- …