63 research outputs found

    Multiple Evidence for Climate Patterns Influencing Ecosystem Productivity across Spatial Gradients in the Venice Lagoon

    Get PDF
    Effects of climatic changes in transitional ecosystems are often not linear, with some areas likely experiencing faster or more intense responses, which something important to consider in the perspective of climate forecasting. In this study of the Venice lagoon, time series of the past decade were used, and primary productivity was estimated from hourly oxygen data using a published model. Temporal and spatial patterns of water temperature, salinity and productivity time series were identified by applying clustering analysis. Phytoplankton and nutrient data from long-term surveys were correlated to primary productivity model outputs. pmax, the maximum oxygen production rate in a given day, was found to positively correlate with plankton variables measured in surveys. Clustering analysis showed the occurrence of summer heatwaves in 2008, 2013, 2015 and 2018 and three warm prolonged summers (2012, 2017, 2019) coincided with lower summer pmax values. Spatial effects in terms of temperature were found with segregation between confined and open areas, although the patterns varied from year to year. Production and respiration differences showed that the lagoon, despite seasonality, was overall heterotrophic, with internal water bodies having greater values of heterotrophy. Warm, dry years with high salinity had lower degrees of summer autotrophy

    Blood-based gene expression as non-lethal tool for inferring salinity-habitat history of European eel (Anguilla anguilla)

    Get PDF
    The European eel is a facultative catadromous species, meaning that it can skip the freshwater phase or move between marine and freshwater habitats during its continental life stage. Otolith microchemistry, used to determine the habitat use of eel or its salinity history, requires the sacrifice of animals. In this context, blood-based gene expression may represent a non-lethal alternative. In this work, we tested the ability of blood transcriptional profiling to identify the different salinity-habitat histories of European eel. Eels collected from different locations in Norway were classified through otolith microchemistry as freshwater residents (FWR), seawater residents (SWR) or inter-habitat shifters (IHS). We detected 3451 differentially expressed genes from blood by comparing FWR and SWR groups, and then used that subset of genes in a machine learning approach (i.e., random forest) to the extended FWR, SWR, and IHS group. Random forest correctly classified 100% of FWR and SWR and 83% of the IHS using a minimum of 30 genes. The implementation of this non-lethal approach may replace otolith-based microchemistry analysis for the general assessment of life-history tactics in European eels. Overall, this approach is promising for the replacement or reduction of other lethal analyses in determining certain fish traits.publishedVersio

    Testing a Model of Pacific Oysters’ (Crassostrea gigas) Growth in the Adriatic Sea: Implications for Aquaculture Spatial Planning

    Get PDF
    Assessing the potential biomass yield is a key step in aquaculture site selection. This is challenging, especially for shellfish, as the growth rate depends on both trophic status and water temperature. Individual ecophysiological models can be used for mapping potential shellfish growth in coastal areas, using as input spatial time series of remotely sensed SST and chlorophyll-a. This approach was taken here to estimate the potential for developing oyster (Crassostrea gigas) farming in the western Adriatic Sea. Industry relevant indicators (i.e., shell length, total individual weight) and days required to reach marketable size were mapped using a dynamic energy budget model, finetuned on the basis of site-specific morphometric data collected monthly for a year. Spatially scaledup results showed that the faster and more uniform growth in the northern Adriatic coastal area, compared with the southern one, where chlorophyll-a levels are lower and summer temperatures exceed the critical temperature limit for longer periods. These results could be used in planning the identification of allocated zones for aquaculture, (AZA), taking into account also the potential for farming or co-farming C. gigas. In perspective, the methodology could be used for getting insights on changes to the potential productivity indicators due to climatic changes

    Are all patterns created equal?:Cooperation is more likely in spatially simple habitats

    Get PDF
    Cooperative behaviours, such as aggregation with neighbouring conspecifics, canenhance resilience in habitats where risks (i.e. predation, physical disturbances) are high, exerting positive feedback loops to maintain a healthy population. At the same time, cooperation behaviours can involve some extra energy expenditures and in‐ creasing resource competition. For sessile reefs, like mussels, simulation models predict increased cooperation under increasing levels of environmental stress. Predation risk is viewed as a behaviour‐modifying stressor, but its role on cooperation mechanisms, such as likelihood of reciprocity, has not yet been empirically tested. This study harnesses this framework to understand how cooperation changes under different perceived levels of predation risk, using mussel beds as model of a complex“self‐organised” system. Hence, we assessed the context dependency of cooperation response in different “landscapes of fear,” created by changes in predator cues, sub‐ stratum availability and body size. Our experiments demonstrated that i) cooperation in a mussel bed system increases when predator cues are present, but that this relationship was found to be both, ii) strongly context‐dependent, particularly upon substratum availability and iii) size‐dependent. That is, while cooperation is in general greater for larger individuals, the response to risk results in greater cooperation when alternative attachment substratum is absent, meaning that simpler landscapes may be perceived as riskier. The context dependency of structural complexity is also an essential finding to consider in a changing world where habitats are losing complexity and cooperative strategies should be maximised

    Low pH conditions impair module capacity to regenerate in a calcified colonial invertebrate, the bryozoan Cryptosula pallasiana

    Get PDF
    Many aquatic animals grow into colonies of repeated, genetically identical, modules (zooids). Zooid interconnections enable colonies to behave as integrated functional units, while plastic responses to environmental changes may affect individual zooids. Plasticity includes the variable partitioning of resources to sexual reproduction, colony growth and maintenance. Maintenance often involves regeneration, which is also a routine part of the life history in some organisms, such as bryozoans. Here we investigate changes in regenerative capacity in the encrusting bryozoan Cryptosula pallasiana when cultured at different seawater pCO2 levels. The proportion of active zooids showing polypide regeneration was highest at current oceanic pH (8.1), but decreased progressively as pH declined below that value, reaching a six-fold reduction at pH 7.0. The zone of budding of new zooids at the colony periphery declined in size below pH 7.7. Under elevated pCO2 conditions, already experienced sporadically in coastal areas, skeletal corrosion was accompanied by the proportional reallocation of resources from polypide regeneration in old zooids to the budding of new zooids at the edge of the colony. Thus, future ocean acidification can affect colonial organisms by changing how they allocate resources, with potentially profound impacts on life-history patterns and ecological interactions. -- Keywords : Phenotypic plasticity ; Resource allocation ; Climate change ; Ocean acidification ; Modular organism ; Bryozoa

    Individual and population-level responses to ocean acidification

    Get PDF
    Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories

    Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study

    Get PDF
    Background Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). Methods We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major candidate genes for monogenic hypercholesterolemia (LDLR, APOB, PCSK9, APOE, LDLRAP1, STAP1). Results A total of 213 variants were detected in 1076 subjects. About 90% of them had a pathogenic or likely pathogenic variants. More than 94% of patients carried pathogenic variants in LDLR gene, 27 of which were novel. Pathogenic variants in APOB and PCSK9 were exceedingly rare. We found 4 true homozygotes and 5 putative compound heterozygotes for pathogenic variants in LDLR gene, as well as 5 double heterozygotes for LDLR/APOB pathogenic variants. Two patients were homozygous for pathogenic variants in LDLRAP1 gene resulting in autosomal recessive hypercholesterolemia. One patient was found to be heterozygous for the ApoE variant p.(Leu167del), known to confer an FH phenotype. Conclusions This study shows the molecular characteristics of the FH patients identified in Italy over the last two years. Full phenotypic characterization of these patients and cascade screening of family members is now in progress
    • 

    corecore