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Abstract 1 

Biogenic habitats, such as coral reefs, facilitate diverse communities. In aquatic systems, 2 

aggregations of mobile benthic species may play a similar ecological role to that of typically 3 

sessile biogenic habitats, however, this has rarely been considered. We quantified the abundance 4 

of sessile mussels (Modiolus modiolus) and aggregating brittle stars (Ophiotrix fragilis) and 5 

tested for correlations between the density of mussels (live and dead) and brittle stars each with: 6 

1) abundance, biomass, diversity and assemblage structure of associated benthic macrofauna; 7 

and 2) percent organic matter of the sediment. We found that the abundance of live M. modiolus 8 

was positively associated with the abundance and biomass of macrofauna. The positive 9 

association between M. modiolus and macrofauna abundance was further amplified with an 10 

increase in brittle stars and a decrease in dead mussel shells. Macrofauna biomass was lower 11 

with more dead mussel shells and macrofauna diversity increased with more live M. modiolus 12 

and brittle stars. Sediment organic matter was positively related with brittle star density, but not 13 

with the abundance of live or dead mussels. The positive relationship between brittle stars and 14 

sediment organic matter suggests that brittle stars could enhance rates of benthic-pelagic 15 

coupling. Given the importance of understanding the functional role of threatened habitats, it is 16 

essential that the underlying community patterns be understood through robust observational 17 

studies to then derive testable hypotheses to determine drivers. These findings provide novel 18 

insight into the ecological role of aggregations of mobile species, which is essential to prioritize 19 

conservation and restoration strategies.   20 
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Introduction 21 

Habitat-forming species, such as corals or trees, are widespread in terrestrial and aquatic 22 

ecosystems worldwide. These species create complex biogenic habitats, which are the foundation 23 

of communities that do not exist in their absence (Bertness & Callaway 1994, Stachowicz 2001). 24 

Increased habitat complexity facilitates increased species richness by reducing predation, 25 

competition and disturbance pressure (Stachowicz 2001, Bruno et al. 2003). In aquatic 26 

ecosystems, biogenic habitats such as seagrass, saltmarsh, mangroves, and bivalve reefs provide 27 

multiple ecosystem services including, the enhanced production of economically important 28 

species, reduced erosion rates, and nutrient removal (Costanza et al. 1997, Grabowski & 29 

Peterson 2007, Barbier et al. 2011). Unfortunately, these marine species are impacted heavily by 30 

human activities and most are reduced to a fraction of their historical abundance globally 31 

(Waycott et al. 2009, Beck et al. 2011, De’ath et al. 2012). The loss of biogenic habitats has in 32 

some instances negated their ecological roles and severely diminished the benefits they provide 33 

to society (Waycott et al. 2009, Ermgassen et al. 2012, 2013). 34 

 Aggregations of mobile fauna are generally considered deleterious to ecosystems; for 35 

example outbreaks of urchins can denude large areas once covered with macroalgae (Steneck et 36 

al. 2004). However, aggregations of mobile species can potentially provide similar functions as 37 

sedentary, foundation species and create biogenic habitats. For instance, aggregations of urchins 38 

can increase biodiversity and provide shelter for prey (Altieri & Witman 2014).  39 

 Mussel reefs, similar to oyster reefs, have been depleted worldwide (Lotze et al. 2006). 40 

The horse mussel, Modiolus modiolus, forms reefs in the North Atlantic ocean (Sanderson et al. 41 

2008, Wildish et al. 2009) and its abundance has declined most likely from habitat destruction 42 

following fishing practices (Magorrian & Service 1998, Strain et al. 2012, Cook et al. 2013) and 43 
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global warming (Gormley et al. 2013). The complex habitat that M. modiolus reefs create is 44 

known for its high diversity of organisms (Rees et al. 2008, Ragnarsson & Burgos 2012, Fariñas-45 

Franco et al. 2013). The loss of live mussels can result in a matrix of dead shell. Experimental 46 

studies that held shell structure constant found that loss of live blue mussels reduce abundance 47 

but not diversity of macrofauna (Norling & Kautsky 2007, Norling et al. 2015), but the loss of 48 

live M. modiolus on reef ecology in natural settings is unknown. 49 

Brittle stars occur in dense aggregations throughout the globe (Fedra 1977, Fratt & 50 

Dearborn 1984). In particular, the suspension feeding brittle star, Ophiothrix fragilis, exists in 51 

dense beds of more than 1,000 individuals m-2 around Britain and Ireland (Warner 1971, 52 

Aronson 1989, Dauvin et al. 2013). Ophiothrix fragilis beds exist in similar environments as M. 53 

modiolus reefs and co-occur in some areas (Sanderson et al. 2008, Ragnarsson & Burgos 2012). 54 

Although it was thought that aggregations of O. fragilis, which often overlay M. modiolus reefs, 55 

may have negative effects on benthic macrofauna from smothering and competition effects, 56 

many species of macrofauna were recorded beneath brittle star beds (Warner 1971). Brittle stars 57 

could facilitate benthic fauna by enhancing deposition of organic material (Warner 1971, Murat 58 

et al. 2016) and provide refuge from predators. Dense aggregations of this mobile species could 59 

provide ecological benefits similar to sessile reef forming species. In addition, there could be 60 

emergent properties when dense aggregations of both sessile and mobile species exist together 61 

(Angelini et al. 2011). However, our understanding of ecological roles associated with these two 62 

habitats, beds of mobile species and reefs of sessile species, is limited.  63 

Modiolus modiolus is protected in Europe under Annex I of the EU Habitats Directive 64 

(Directive 93/43/EEC) and the OSPAR convention (Rees et al. 2008). Therefore a survey based 65 

on benthic grabs was designed to determine the extent and condition of M. modiolus reefs in 66 
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Northern Ireland to inform management decisions about their conservation. This intensive survey 67 

allowed an unprecedented opportunity to study this heavily protected biogenic habitat and 68 

determine ecological patterns which are a necessary precursor to conducting manipulative 69 

experiments to pinpoint underlying mechanisms (Underwood et al. 2000). Our aim was to 70 

characterize the ecological roles of a declining biogenic-reef forming species, M. modiolus, and a 71 

common co-occurring benthic species, O. fragilis. We quantified how the abundance of live M. 72 

modiolus, M. modiolus shell (dead M. modiolus) and O. fragilis was related with: (i) macro-73 

benthic species abundance, biomass, richness, diversity and assemblage structure; and (ii) 74 

sedimentary organic matter. We hypothesized that the abundance of live M. modiolus and O. 75 

fragilis would have a similar positive relationship with the abundance, biomass, richness and 76 

diversity of the benthic macrofauna, and the sediment organic matter. Moreover, the abundance 77 

of M. modiolus shell would not have a correlation with the abundance, biomass, richness, and 78 

diversity of the benthic macrofauna, and the sediment organic matter because shell has less 79 

structural complexity compared to live mussels and does not produce fecal matter (as would be 80 

expected in reefs comprised of mainly live animals). Finally, prevalence of live M. modiolus, M. 81 

modiolus shell and O. fragilis will explain a similar amount of variation in the macrofauna 82 

assemblage. 83 

 84 

Materials and Methods 85 

Data collection 86 

To quantify the variation in benthic fauna and sediment organic matter related with the 87 

abundance of M. modiolus, M. modiolus shell, and O. fragilis, a grab sampler was used to sample 88 

53 sites at two locations off the east coast of Northern Ireland at depths of 20-30 m (Fig. 1). 89 
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Sampling sites were dispersed evenly within different acoustic signatures of a single beam sonar 90 

survey conducted by Northern Ireland Agri-Food and Biosciences Institute in 2014 (unpub. 91 

data). Samples were collected over 5 days between the 9th of September and the 16th of 92 

December 2014. The Day grab used in this study removed approximately 0.1 m2 area of 93 

substratum (approximately 2 l of sediment; Appendix S1). Grabs with minimal sediment (< 1 L 94 

of sediment) were recorded as misfires and the grab was deployed again. Three replicate grabs 95 

were taken at each site unless 3 successive misfires were recorded and no more samples were 96 

taken at that site. The environment of these locations made diver surveys impractical (depth and 97 

currents) and although larger grab samples would have been optimal, a day grab was used to 98 

remove a minimal amount of the protected M. modiolus reef. Each sample was photographed and 99 

the percentage cover of M. modiolus shell, mud, and sand were estimated visually based on the 100 

grab surface (Appendix 2). Sediment samples were taken from the top 2 cm of 2 haphazardly 101 

chosen grabs from each site. However, sediment was collected from all three samples from 9 102 

sites because live M. modiolus was present in the grabs. Sediment organic matter was collected 103 

from 101 grabs at 46 sites. Sediment samples were freeze dried, sieved through 1 mm mesh, and 104 

placed in a combustion oven at 500°C for 6 hours (Dean 1974). The percent organic matter was 105 

determined by dividing the difference in mass of the sediment before and after combustion by 106 

the mass of the sediment before combustion. 107 

Conspicuous macrofauna were quantified from 140 grab samples at 53 sites, which were 108 

searched thoroughly on the boat after the grab sample was sieved through 1 mm mesh and all 109 

bivalves, crustaceans, echinoderms, fish, gastropod, and polychaetes were collected and frozen. 110 

Macrofauna were identified to the lowest practical taxon, counted and wet weight recorded for a 111 

total taxon biomass. Macrofauna identification was based on morphological characteristics 112 
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following guides (Hayward & Ryland 1995). A subset of grab samples (approximately 1 grab 113 

from each site) were returned to the laboratory and cryptic species, which were not attached to 114 

the substratum, were quantified in addition to the conspicuous macrofauna (Appendix S3). 115 

Results of analyses from these samples were consistent with those based on conspicuous fauna 116 

thus for clarity we are presenting only the findings for the conspicuous fauna. Animal handling 117 

protocols followed the ethical guidelines of Queen’s University Belfast.  118 

Data Analysis 119 

We tested effect of substrate type (live M. modiolus, M. modiolus shell, or O. fragilis) on benthic 120 

macrofauna abundance, biomass, taxon richness, diversity and assemblage structure. 121 

The abundance of M. modiolus and O. fragilis in grab samples were a priori determined as 122 

predictor variables and not included as benthic fauna in the analyses. Generalized linear models 123 

were used to test for variations in total faunal abundance and taxon richness associated with 124 

changes of the three habitat types (M. modiolus, M. modiolus shell, and O. fragilis) with Poisson 125 

distributions because data were skewed towards zero. General linear models were used to test for 126 

variations in non-integer dependent variables (biomass and diversity) associated with changes in 127 

the three habitat types. Diversity for each sample was calculated with the Shannon-Weaver 128 

index. Multi-collinearity between predictor variables was tested using the variance inflation 129 

factor (VIF) and < 10 indicated minimal multi-collinearity (Hair 2006). Site within location 130 

(North or South as shown in Fig. 1) was included as random variables in the model to account 131 

for the nested sampling design. All interactions were included in the models and the predictor 132 

variables were centred (the mean was subtracted from each value) to reduce multi-collinearity 133 

between predictor variables and interactions (Quinn & Keough 2002) and scaled (divided by the 134 

standard deviation) to reduce the difference in magnitude among the predictor variables (Bates et 135 
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al. 2014). All analyses were conducted in R (R Development Core Team 2012). Diversity was 136 

calculated using the div function within the vegan package (Oksanen et al.). The glmer function 137 

within the lme4 package (Bates et al. 2014 4) was used for both abundance and richness of 138 

benthic fauna. Biomass, diversity and organic matter were analysed using lmer function within 139 

the lme4 package to calculate t values, while the Analysis of Variance (ANOVA) function within 140 

the car package was used to generate p values and test for significance (Fox & Weisberg 2011). 141 

Interactions and random variables (site nested in location) were included in the organic matter 142 

model. Models were checked to ensure an adequate fit by visually inspecting residuals vs fitted 143 

(randomly distributed points) and Q-Q (points were near 1:1 ratio) plots (Crawley 2007). 144 

Biomass of macrofauna was log transformed to improve model fit. 145 

To quantify the amount of variation in benthic fauna assemblage explained by the 146 

abundance of M. modiolus, M. modiolus shell, and O. fragilis, which were all continuous 147 

variables, we used Permutational Analysis of Variance (PERMANOVA, McArdle & Anderson 148 

2001, Anderson 2001) and redundancy analysis (RDA, Legendre & Anderson 1999). 149 

PERMANOVA partitions the variation of a resemblance matrix among sources of variation and 150 

fits linear models to test hypotheses and build models without ordination. RDA performs 151 

ordination of fitted values to test hypotheses, build models, and create visualizations of the data 152 

(Legendre & Anderson 1999). RDA reduces the variance into dimensions, which makes 153 

visualizations of the data possible but may reduce the amount of variance explained by predictor 154 

variables. However, PERMANOVA analyzes the data without constraining the variance into 155 

dimensions so that the relationship between community structure and predictor variables is 156 

probably closer to what exists naturally. Histograms of each predictor variable and scatter plots 157 

of all combinations of predictor variables were examined to ensure there were no extreme 158 
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outliers. Linear-based analyses can be biased by multi-collinearity (Legendre & Anderson 1999), 159 

we tested for multi-collinearity as previously described using VIF. Multivariate analyses used the 160 

vegan package version 2.2-0 (Oksanen et al. 2010).  161 

Taxon-specific abundances were log-transformed to reduce the influence of abundant 162 

taxa in the analyses, and a Bray-Curtis dissimilarity matrix was created (Anderson et al. 2008, 163 

Legendre & De Cáceres 2013). The mean of taxon abundance per site was used to remove the 164 

possibility of non-independent samples within each site. Interactions were included in the 165 

sequential PERMANOVA and predictor variables were centred and scaled to reduce 166 

multicollinearity between variables and interactions. A second PERMANOVA was run with 167 

taxon-specific biomass following the same procedure described for abundance. 168 

 169 

Results 170 

Modiolus modiolus was present in 45 of the samples and ranged from 1 to 65 individuals per 171 

grab (~10 to 650 m-2). Ophiotrix fragilis was present in 81 (out of 140) of the samples which 172 

ranged from 1-203 individuals per grab (~10 to 2,030 m-2). Fifty-seven different taxa were 173 

quantified in the samples (Appendix S3). The substratum of the grabs was primarily M. modiolus 174 

shell and mud, with sand being less prevalent (Appendix 4). The abundance of live M. modiolus 175 

and O. fragilis had similar patterns with changes in the different types of substratum. The 176 

abundance of benthic fauna increased with the number of live M. modiolus and there were 177 

interactions between M. modiolus and O. fragilis, and M. modiolus and M. modiolus shell (Table 178 

1; Fig. 2A, D and G; Fig. 3). The interaction between M. modiolus and O. fragilis resulted from a 179 

greater increase in fauna abundance as M. modiolus increased when there were more O. fragilis 180 

(Fig 3A). The opposite trend existed for the interaction between M. modiolus and M. modiolus 181 
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shell; there was a greater increase in fauna abundance as M. modiolus increased when there was 182 

less shell (Fig 3B). Biomass of macrofauna increased with M. modiolus, but decreased with M. 183 

modiolus shell (Table 1; Fig 2B and E). The interaction between all predictor variables was also 184 

significant for the biomass of macrofauna (Table 1). 185 

The three predictor variables did not explain a significant amount of variation in the 186 

number of taxon (richness) in a sample and there were no significant interactions (Table 1). M. 187 

modiolus and O. fragilis were associated with an increase in the macrofauna diversity (Table 1, 188 

Fig 2C and I). O. fragilis was positively related with organic matter, while the prevalence of M. 189 

modiolus or M. modiolus shell did not explain a significant amount of variation in organic matter 190 

(Table 1; Fig. 4A-C). The three-way interaction was significant for organic matter and resulted 191 

from a positive relationship between O. fragilis and organic matter, which was greatly reduced 192 

with an increase in M. modiolus abundance and reduced with an increase in M. modiolus shell 193 

cover (Fig. 4D). 194 

The amount of variation in faunal assemblage using abundance explained by M. 195 

modiolus, O. fragilis, and M. modiolus shell was quantified using a PERMANOVA. Modiolus 196 

modiolus (F1,52 = 3.16; P<0.001), O. fragilis (F1,52 = 5.45; P<0.001), and M. modiolus shell (F1,52 197 

= 5.11; P<0.001) were significant and explained more variation in fauna assemblage than would 198 

be expected by random chance. No interactions were significant. Modiolus modiolus shell 199 

explained the most variation in macrofauna assemblage of the 3 continuous predictor variables 200 

(R2 = 8.4%), followed by O. fragilis (R2 = 5.7%), and M. modiolus (R2 = 5.2%). The RDA 201 

represents the relationship between predictor variables and individual taxon. RDA explained 202 

10.7% of the variation in fauna assemblage. The first and second axes explained 6.5 and 2.9% of 203 

the variation respectively. Modiolus modiolus was positively related with axis 1 and M. modiolus 204 
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shell was positively related with axis 2 (Appendix S5). Ophiocomina nigra (a brittle star) was 205 

positively related with the second axis, and Ophiura spp. (a brittle star) and Timoclea ovata (a 206 

bivalve) were negatively related with the second axis (Appendix S5). The fauna assemblage 207 

based on biomass had similar findings as the assemblage using abundance with all three 208 

predictor variables explaining a significant amount of variation. Modiolus modiolus shell 209 

explained the most variation in macrofauna assemblage of the 3 continuous predictor variables 210 

(R2 = 8.7%), followed by O. fragilis (R2 = 6.3%), and M. modiolus (R2 = 4.1%). 211 

 212 

Discussion 213 

Biogenic habitats composed of aggregations of sessile species, often referred to as 214 

meadows or reefs, are touted for their ecological and economic benefits (Anton et al. 2011, 215 

Barbier et al. 2011, Firth et al. 2015). On the other hand, dense aggregations of mobile species 216 

are generally viewed negatively; however, this study indicates that increasing densities of O. 217 

fragilis were associated with greater macrofauna diversity and organic matter, and had a positive 218 

emergent effect on the total abundance of fauna within M. modiolus reefs. Although these results 219 

are correlations, they could suggest that aggregates of brittle stars enhance diversity of 220 

macrofauna and increase sediment organic matter similar to or more than filter feeding bivalves. 221 

The ecological effect of a single foundation species on the local community has been 222 

extensively studied (Grabowski et al. 2005, Geraldi et al. 2009), however, multiple species often 223 

coexist together and little is known about potential interactions among different species 224 

(Angelini et al. 2011, Donadi et al. 2015). One study that included multiple ecosystem engineers 225 

found that the presence of Caulerpa taxifolia, a macroalgae, near Anadora trapezia, a clam, 226 

increased diversity and abundance of epibiota on the bivalve (Gribben et al. 2009). Most of these 227 
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studies focused on relatively sessile species and there is the potential for mobile species to also 228 

enhance both density and diversity of associated fauna (Altieri & Witman 2014). The abundance 229 

of O. fragilis was related with enhanced diversity of macrofauna and had a positive emergent 230 

effect with M. modiolus reefs on the abundance of macrofauna. In addition, minimal 231 

multicolinearity among predictor variables indicates that there was no facilitation between O. 232 

fragilis and M. modiolus, and that abundances of live and dead M. modiolus were independent. 233 

Finally, all three habitat types measured had similar influence on the macrofauna assemblage 234 

(explained between 5 and 8% of the variation in assemblage).  235 

Our conclusions are based on a robust survey, which aimed to identify ecological patterns 236 

associated with different dominant species (mussels and/or brittle stars). Experimental 237 

manipulation is required to determine the mechanisms driving these differences, which is 238 

difficult given the ethical and logistical limitations of manipulating a rare species that primarily 239 

exist in areas with high currents and deeper than 20 m. Given our existing knowledge, 240 

aggregations of brittle stars and other mobile species appear to share similar roles as some well-241 

described sessile foundation species. For example, positive effects on the macrofauna 242 

community associated with aggregations of mobile fauna could result from reduced predation 243 

from provision of shelter (Bruno et al. 2003) or from increased food provision via biodeposition 244 

(Norling & Kautsky 2007). 245 

 Understanding how the loss of individual bivalves from reefs affects ecological 246 

functioning is important given the prevalence of reef degradation (Beck et al. 2011, Ermgassen et 247 

al. 2012). Teasing apart the provision of habitat by the physical structure from the biotic function 248 

of bivalve reefs has been studied using experimental reefs. For example, the diversity of 249 

macrofauna was similar on blue mussel (Mytilus edulis) reefs compared to reefs made of intact 250 
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shells, while the abundance was greater on live reefs possibly because of resources supplied by 251 

biodeposition (Norling & Kautsky 2007). Similarly, another study found that diversity of 252 

epibenthic fauna was similar among live and dead experimental reefs of oysters or mussels, 253 

while abundance of epibenthic fauna was greatest on oyster shell, moderate on live bivalve reefs 254 

and lowest on mussel shell reefs (Norling et al. 2015). We found that the amount of naturally 255 

occurring dead shell was not related with the abundance, richness and diversity of benthic 256 

macrofauna, and that dead shell cover was negatively related with the biomass of macrofuana. 257 

Separating the role of the physical reef structure from associated biotic functioning is necessary 258 

to identify ecological mechanisms, and also to predict changes in ecosystem functioning 259 

associated to bivalve mortality from direct or indirect anthropogenic impacts. 260 

Biodeposition by filter feeding bivalves is an important process in coastal ecosystems 261 

because it couples pelagic and benthic communities. Benthic-pelagic coupling may reduce 262 

occurrences of hypoxia by directly reducing phytoplankton abundance (Dame & Olenin 2005, 263 

Grizzle et al. 2008) and indirectly through nitrogen removal by enhancing denitrification on the 264 

sediment because of the high quality resources provided by biodeposits (Kellogg et al. 2013, 265 

Smyth et al. 2013, 2015). Modiolus modiolus produce nutrient rich biodeposits (Navarro & 266 

Thompson 1997), however, we did not identify a relationship between M. modiolus density and 267 

sediment organic matter content. We did find a positive relationship between brittle star density 268 

and organic matter content. This relationship could have resulted from brittle stars preferring 269 

benthos with greater organic matter.  However, our results indicate that O. fragilis and M. 270 

modiolus have similar abundance patterns in shell, mud and sandy substratum suggesting that 271 

brittle stars are not preferentially selecting one type of substratum that could be causing this 272 

relationship, which is likely driven by benthic-pelagic coupling. A positive relationship between 273 
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total organic carbon and brittle star density was found in stable environments (Murat et al. 2016) 274 

and benthic-pelagic coupling associated with brittle star beds was suggested to reduce 275 

eutrophication in coastal bays (Hily 1991). Both M. modiolus and O. fragilis are suspension 276 

feeders but use entirely different mechanisms to collect suspended particles. M. modiolus is an 277 

active filter feeder while O. fragilis passively feeds on phytoplankton (Roushdy & Hansen 1960, 278 

Migne et al. 2012, BlanchetAurigny et al. 2015).  The stronger association between brittle stars 279 

and sediment organic matter compared to M. modiolus could result from O. fragilis having a low 280 

absorption efficiency (Migné & Davoult 1998) or that aggregations reduce water motion and the 281 

erosion of biodeposits (Warner 1971) more than mussel reefs. Our findings, that organic matter 282 

was positively related with brittle star abundance and not M. modiolus density, may suggest that 283 

benthic-pelagic coupling in brittle star beds is potentially greater than in bivalve reefs and this 284 

should be investigated further. 285 

 The ecological and economic benefits of marine biogenic habitats, such as coral reefs, 286 

salt marshes and bivalve reefs, are well known and are the impetus for their conservation and 287 

restoration (Brumbaugh & Coen 2009, Barbier et al. 2011, Geraldi et al. 2013, La Peyre et al. 288 

2014). Beds of brittles stars may enhance the diversity of macrofauna and increase benthic-289 

pelagic coupling equal to or greater than bivalve reefs. The carbon budgets associated with 290 

biomass production and calcification has been quantified for brittle star beds (Migne et al. 1998, 291 

Davoult et al. 2009, Lebrato et al. 2010), however, their potential importance for other rates of 292 

ecosystem functioning and associated services is relatively unknown. The ecosystem functions 293 

provided by brittle stars are probably context-dependent, but the global functional role of these 294 

taxa may be equal to or greater than other sessile foundation species for multiple reasons. First, 295 

brittle star beds are prevalent around the globe given that they have been documented from the 296 
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Arctic (Piepenburg & Schmid 1996, Blicher & Sejr 2011) to the Antarctic (Fratt & Dearborn 297 

1984) and throughout the mid-latitudes (Haedrich et al. 1980, Fujita 1990). They are also present 298 

at broad depth ranges (Lebrato et al. 2010) and not restricted to estuaries and coasts like 299 

traditional biogenic habitats. 300 

Determining the ecological functions provided by aggregations of mobile species and 301 

comparing these to functions provided by traditional biogenic habits, as well as potential 302 

emergent effects between the two are needed to understand the relative importance of these 303 

species to broader ecosystem processes and functions. This is of utmost importance as humans 304 

are constantly altering the abundance and extent of both sessile and mobile species. The applied 305 

implications of these results, if confirmed by manipulative experiments, include assigning 306 

aggregates of mobile species similar conservation status as sessile foundation species (Peterson 307 

& Lipcius 2003, Byers et al. 2006, Lampert & Hastings 2014).  308 
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Table 1. Summary of statistical models to assess the relationship between the predictor variables 515 

(abundance of M. modiolus, M. modiolus shell, and O fragilis) and the abundance, biomass, 516 

richness, and diversity of benthic fauna, and organic matter collected in samples (significant 517 

predictor variables and interactions are bold). 518 

 519 

 520 
 521 

 522 

  523 
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Figure legends 524 

Fig. 1. Sampling sites near the Outer Ards Peninsula, east coast of Northern Ireland. Three 525 

replicate grab samples were taken at each site 526 

Fig. 2. The relationship between the abundance (left column), biomass (middle column), and 527 

diversity (right column) of benthic fauna quantified in day grabs, and M. modiolus, M. modiolus 528 

shell or O. fragilis. Predictor variables that were significant are indicated by black lines (See 529 

Table 1 for statistical summary). 530 

Fig. 3. The interactions between the abundance of M. modiolus and O. fragilis (A) and between 531 

M. modiolus and M. modious shell (B) in explaining variation in the abudnance of benthic fauna. 532 

The data points and trend lines were catagorized based on abundance of O. fragilis (A) or 533 

percent shell cover (B). 534 

Fig. 4. The relationship between the abundance of M. modiolus (A), M. Modiolus shell (B), O. 535 

fragilis (C), and the percent organic matter in sediment collected in day grabs. The interaction 536 

between all three predictor variables and the percent organic matter (D). O. fragilis and the 537 

interaction between the three predictor variables explained a significant amount of variation in 538 

percent organic matter. Predictor variables that were significant are indicated by black lines (See 539 

Table 1 for statistical summary). 540 
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Fig. 1 542 

 543 
 544 

  545 
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Fig. 2 546 

 547 
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Fig. 3 549 

 550 

  551 
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Fig. 4 552 
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Appendices 554 

Appendix S1. Picture of the day grab used to sample fauna. Photo credit: C. Bertolini 555 

   556 
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Appendix S2. Day grabs illustrating typical samples with M. modiolus and O. fragilis (A), M. 557 

modiolus shell (B), O. fragilis (C), and mud (D). The grab sampled 0.1m2. Photo credits: C. 558 

Bertolini and N. Geraldi. 559 

 560 

  561 

A

DC

B



Running header: Aggregations of mussels and brittle stars 
 

 17 

Appendix S3. Taxon and their respective groups quantified in the grab samples. The proportion 562 
for each taxon of the total number of individuals for the grabs that had all taxon quantified and 563 
for the grabs that only conspicuous taxon were qunatified. Only data from conspicuous taxon 564 
were used for all analyses. 565 
 566 

Taxa Taxa group Full Conspicuous 
Abra alba Bivalve 0.248 0.254 
Amphipholis squamata Echinoderm 

 
0.002 

Amphiura chiajei Echinoderm 
 

0.008 
Amphiura filiformis Echinoderm 

 
0.010 

Anomiidae Bivalve 0.018 
 Aphrodita aculeata Polychaete 0.001 0.001 

Astarte sulcata Bivalve 0.033 0.036 
Atelecyclus rotundatus Crustacean 

 
0.001 

Buccinum undatum Gatropod 0.005 0.012 
Capitellidae Polychaete 0.046 

 Caprella acanthifera Crustacean 
 

0.001 
Clausinella fasciata Bivalve 0.009 0.015 
Crossaster papposus Echinoderm 

 
0.003 

Diodera graeca Gatropod 
 

0.001 
Ebalia tuberosa Crustacean 

 
0.003 

Echinocardium cordatum Echinoderm 
 

0.001 
Emarginula fissura Gatropod 0.003 

 Eschinus esculentus Echinoderm 0.003 0.003 
Eteone longa Polychaete 0.004 

 Eunereis longissima Polychaete 0.004 
 Eunicidae Polychaete 0.005 
 Euspira nitida Gatropod 0.002 
 Galathea Crustacean 

 
0.017 

Galathowenia oculata Polychaete 0.002 
 Gammaridae Crustacean 

 
0.008 

Gari depressa Bivalve 0.024 0.021 
Gari tellinella Bivalve 0.027 0.030 
Gattyana cirrhosa Polychaete 0.002 

 Gibbula cineraria Gatropod 0.002 
 Glycera spp. Polychaete 0.004 
 Glycimeris glycimeris Bivalve 0.004 0.003 

Gobiesocidae Fish 
 

0.004 
Golfingiidae Sipunucla 0.005 0.005 
Harmothoe Polychaete 0.014 0.009 
Hesionidae Polychaete 0.002 

 Hiatella arctica Bivalve 0.013 0.010 
Hippolytidae Crustacean 

 
0.017 
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Lepidonotus squamatus Polychaete 0.013 0.010 
Leptochiton asellus Chiton 0.029 0.018 
Limaria sp. Bivalve 0.010 0.007 
Liocarcinus spp. Crustacean 

 
0.004 

Lumbrineridae Polychaete 0.015 
 Marthasterias glacialis Echinoderm 

 
0.008 

Mediomastus fragilis Polychaete 0.002 
 Mimachlamys varia Bivalve 0.018 0.017 

Mya arenaria Bivalve 0.009 0.009 
Mya truncata Bivalve 0.009 0.007 
Myrtea spinifera Bivalve 0.003 

 Mytilus edulis Bivalve 
 

0.006 
Nemertea Nematode 0.001 0.003 
Nephtheidae Polychaete 0.027 0.018 
Nereis spp. Polychaete 0.001 0.001 
Nucula nucleus Bivalve 0.079 0.069 
Nuculanidae Bivalve 0.002 

 Oenonidae Polychaete 0.003 
 Onchidoris spp. Nudibranch 0.001 
 Onoba semicostata Gatropod 0.002 
 Ophelina acuminata Polychaete 0.009 
 Ophiocomina nigra Echinoderm 

 
0.057 

Ophiura spp. Echinoderm 
 

0.062 
Orbiniidae Polychaete 0.003 

 Owenia fusiformis Polychaete 0.013 0.008 
Paguridae Crustacean 

 
0.024 

Parvicardium pinnulatum Bivalve 0.004 
 Pecten maximus Bivalve 0.003 
 Pectinariidae Polychaete 0.004 
 Pherusa plumosa Polychaete 0.058 0.038 

Pholas dactylus Bivalve 
 

0.014 
Pilumnus hirtellus Crustacean 

 
0.003 

Pisa spp. Crustacean 
 

0.009 
Pisidia longicornis Crustacean 

 
0.006 

Platyhelminthes Platyhelminthes 0.001 
 Polynoidae Polychaete 0.016 0.013 

Psammechinus miliaris Echinoderm 0.001 0.002 
Sabellidae Polychaete 0.045 

 Scalibregma inflatum Polychaete 0.011 
 Scoloplos armiger Polychaete 0.004 
 Sepiola spp. Cepholopod 0.001 
 Serpulidae Polychaete 0.005 0.006 

Spatangus purpureus Echinoderm 
 

0.001 
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Spionidae Polychaete 0.001 0.001 
Talochlamys pusio Bivalve 

 
0.001 

Tapes aureus Bivalve 0.002 
 Tapes rhomboides Bivalve 0.005 
 Terebellidae Polychaete 0.020 0.017 

Timoclea ovata Bivalve 0.087 0.085 
Tritia incrassata Gatropod 0.001 0.005 
Trivia arctica Gatropod 0.002 

 Tubificoides spp. Polychaete 0.001 
 Velutina velutina Gatropod 0.002 
  567 

  568 
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Appendix S4 569 
The abundance of M. modiolus (left column) and O. fragilis (right column) in grab samples 570 

compared to the percent cover of 3 substrate categories. Substrate type was determined from 571 

photos of grabs. Fitted lines were determined by the lowess function in R. 572 

 573 

  574 
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Appendix S5. The first and second axis of RDA of the fauna assemblage in grab samples 575 

overlaid with vectors of predictor variables (A) and taxon centroids (B). The first axis explained 576 

6.5% and the second explained 2.9% of the variation respectively. To make taxon labels readable 577 

and to reduce clutter in B, only the most abundant taxon that did not overlap with other taxon 578 

labels are shown. Grey dots represent individual samples and vector length is relative to the 579 

variance explained by the variable. 580 

 581 


