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Individual and population-level 
responses to ocean acidification
Ben P. Harvey1, Niall J. McKeown1,*, Samuel P. S. Rastrick2,3,*, Camilla Bertolini4, 
Andy Foggo5, Helen Graham6,7, Jason M. Hall-Spencer5, Marco Milazzo8, Paul W. Shaw1, 
Daniel P. Small9 & Pippa J. Moore1,10

Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological 
processes. Despite growing evidence for direct impacts on specific species, few studies have 
simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for 
energy budgets and resource partitioning) and population level demographic processes. Here we 
show that ocean acidification increases energetic demands on gastropods resulting in altered energy 
allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-
term exposure to ocean acidification altered population demography, with evidence of a reduction in 
the proportion of females in the population and genetic signatures of increased variance in reproductive 
success among individuals. Such increased variance enhances levels of short-term genetic drift which is 
predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, 
ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary 
trajectories.

Ocean acidification represents a deleterious anthropogenic influence that can affect the vital functions of marine 
organisms1, with many studies reporting implications for growth, development and reproduction due to energetic 
trade-offs in important energy-demanding processes2–4. If organisms cannot maintain their energy budgets then 
their reproductive contribution to subsequent generations may be compromised, with implications for species’ 
abundances and distributions5. Predicting the fate of marine biodiversity in the face of climate change, including 
ocean acidification, will therefore require scaling up from impacts upon individuals’ physiology and fitness to 
population level demographic processes.

We investigated the effects of ocean acidification on the gastropod Hexaplex trunculus (L.), a widespread 
Mediterranean mollusc. Our study made use of CO2 seeps off the coast of Isola Vulcano (Sicily, Italy), which 
provide a natural gradient of pH and a carbonate chemistry analogue for future oceans6, as well as the means to 
investigate naturally-assembled communities. As a slow-moving and predominantly direct developing organism 
H. trunculus has low dispersal capacity (relative to the spatial scale of the seep system), resulting in the potential 
for population genetic structuring at a fine geographical scale. This makes it an ideal model with which to inves-
tigate individual- to population-level responses to prolonged (multigenerational), exposure to elevated pCO2.

Three sites along the natural pH gradient were used (Fig. 1; full carbonate chemistry details are presented in 
Supplementary Table 1). All three sites experience stable ambient temperature and salinity, with the mean surface 
seawater pH progressively decreasing with proximity to the CO2 seeps7. The Low pH site experienced elevated 
pCO2 conditions (7.65 ±  0.01 pHT), the Control site experienced ambient pH conditions (8.00 ±  0.01 pHT) over 
the long-term, albeit with periods of short-term (hours/days) pH variability (likely associated with wind-driven 
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currents7) and the Reference site experienced long-term stable, ambient pH conditions (8.07 ±  0.01 pHT), unaf-
fected by the seeps.

Environmental factors modulate metabolic activity through alterations in resource demand and/or availa-
bility. Should insufficient resources be available, then stress-induced trade-offs between energy demanding pro-
cesses can occur (e.g. growth, shell maintenance and reproduction)4. The capacity of an organism to maintain 
elevated metabolic rates (relative to their tissue mass4) may allow them to sustain positive life-history traits8, and 
determine organism fitness in future acidified oceans4.

Using reciprocal transplants of H. trunculus between two sites (Low pH and Control site) we tested how ocean 
acidification modulates metabolic activity using oxygen consumption rate ( MO2) as a proxy. Results demonstrate 
that metabolic rate was significantly increased by exposure to elevated pCO2 (ANOVA, F1,20 =  4.87, p =  0.039). 
The mean MO2 of individuals collected and caged at the Low pH site was significantly higher compared to indi-
viduals collected from, and caged in control conditions (Fig. 2). This suggests that individuals of H. trunculus 
experience increased energetic demand under persistent exposure to ocean acidification, in part this is likely due 
to higher predicted costs of maintaining calcification and acid–base homeostasis9. Both nuclear and mtDNA 
genetic markers showed no evidence of restricted gene flow between populations at these two sites (see 
Supplementary Table 2 and 3) suggesting that differences in metabolic rate were a result of acclimatisation rather 
than being driven by genetic differences attributable to drift or population isolation. When H. trunculus individ-
uals were reciprocally transplanted between Control and Low pH sites, metabolic rates did not significantly differ 
(Tukey HSD post-hoc, p >  0.05), with mean MO2 intermediate between the other two treatments (Fig. 2). These 
results suggest that individuals entering or leaving acidified areas may acclimate via physiological plasticity8 
(Fig. 2).

Acclimatisation can buffer populations against the immediate impacts of ocean acidification, and even pro-
vide time for adaptation10. However, it can also result in stress-induced energetic trade-offs. Mean shell length 
(ANOVA, F2,208 =  3.33, p =  0.034) and thickness (ANOVA, F2,66 =  4.36, p =  0.017) in the acidified conditions 
were significantly lower (Fig. 3), but by contrast the mean (shell-free) body mass of individuals was significantly 
greater in the Low pH site (ANOVA, F2,66 =  22.37, p <  0.001; Fig. 4). Regulation of pH at the site of calcification 

Figure 1. Map of the study area. Baia di Levante (Isola Vulcano, Sicily), showing sampling sites ‘Low pH’ (pHT 
7.65 ±  0.01), ‘Control’ (pHT 8.00 ±  0.01) and ‘Reference’ (pHT 8.07 ±  0.01), with ‘x’ indicating the gas seeps. The 
map was generated using ArcGIS 9.3 software (http://www.esri.com/software/arcgis/).

http://www.esri.com/software/arcgis/
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is energetically costly11, and associated increases in energy partitioning towards maintaining acid–base homeo-
stasis may reduce net calcification rates9. Reduced shell thickness may also lessen any growth-limiting effect that 
the shell structure has on somatic tissue growth11, allowing for a larger body mass (assuming sufficient energy is 
available).

When scaling from the individual to the population there is a need to consider whether responses are 
sex-specific, since any disproportionate effects on one or the other sex could subsequently affect population 
demographics. To our knowledge, no previous studies have provided evidence for skewed sex ratios associated 
with ocean acidification. However, it has been previously demonstrated that sex-specific effects can alter how an 
individual responds to, or is affected by ocean acidification. For instance, the metabolome of males and females 
of the blue mussel Mytilus edulis differed significantly when exposed to reduced pH12. Moreover, it has been 
suggested that selection pressures to ocean acidification may differ between sexes13. We found that significantly 
fewer females were present in the Low pH site (32.26%, χ 21, 31 =  3.90, p =  0.048), while the sex ratio in the ambient 
pH sites did not significantly differ from equality (Control, 54.84% female; Reference, 45.83% female, χ 2 both 
p >  0.50). It should be noted that there are increased levels of trace elements and heavy metals at our low pH site 
(due to the use of the CO2 seep site14). While a previous study, at the same study sites and using the same species 
as the present work, found no spatial pattern in trace element bioaccumulation15 it is not possible to disentangle 

Figure 2. Effect of exposure to different pCO2/pH conditions on the mean (± S.E.) oxygen consumption rate of 
H. trunculus that were either (i) collected in the Control site and re-transplanted in the Control site (Control-
Control), (ii) transplanted from the Control site to the Low pH site (Control-Low pH), (iii) re-transplanted 
within Low pH site (Low pH-Low pH) and (iv) transplanted from Low pH into the Control Site (Low pH-
Control). Mean MO2 is expressed as nmol O2 h−1 mg−1 (WW) STPD. Significantly different treatments are 
indicated by different lower case letters above the column (Tukey HSD, p ≤  0.05).

Figure 3. Shells of the investigated species. Samples of H. trunculus living at the Low pH site (a) showing shell 
dissolution and reduced shell size when compared to individuals from the Control (b), and Reference site (c). 
The individuals displayed are representative for both the mean shell length, as well as the overall shell condition 
and shape based on geometric morphometric analyses (Harvey, unpublished data).
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the effects of reduced pH from potential changes in sex ratios that can occur through the bioaccumulation of 
heavy metals and trace elements16,17. Therefore, while our findings imply that sex-specific responses to ocean acid-
ification may occur with consequences for individual performance and fitness, as well as for population dynamics, 
some caution in their interpretation is advised.

Despite the absence of genetic differentiation between the sites’, the prominent feature of the genetic data was 
the large, significant FIS values reported for the Low pH site compared to non-significant values reported for both 
ambient pH sites (Low pH multi-locus FIS =  0.2036, p <  0.0001; Control multi-locus FIS =  − 0.0368, p =  0.2692; 
Reference multi-locus FIS =  − 0.0379, p =  0.9879). The FIS values suggest that for H. trunculus some aspect of 
the acidified environment results in greater departures from Hardy-Weinberg equilibrium outcrossing genotype 
proportions in the form of heterozygote deficits. Such site-specific heterozygote deficits could be generated by 
inbreeding, natural selection acting on the genetic markers, or spatial/temporal structure within samples known 
as the Wahlund effect18. As the significant multi-locus FIS values resulted from significant values at the majority of 
individual loci, locus-specific selection effects are unlikely. Inbreeding effects within a small population can also 
be discounted, as the Low pH site sample reported significantly reduced mean individual relatedness (mr) values 
compared to the Control (p =  0.03) and Reference (p =  0.048) sites (Low pH mr =  − 0.514; Control mr =  0.0077; 
Reference mr =  0.0066).

For a Wahlund effect to be observed, genetically distinct populations must occur within the geographical 
scale of the sampling. Due to the high gene flow indicated throughout the sampled area, any heterogeneity in 
allele frequencies is more likely to be generated by increased variance in reproductive success among individuals, 
rather than by spatial population structuring per se. Such variance in reproductive success among individuals has 
been reported for many highly fecund marine invertebrates and is often referred to as sweepstakes recruitment19. 
Within such a reproductive system many individuals do not contribute to recruitment in a given cycle, resulting 
in short-term genetic drift generating allele frequency differences among groups of recruits even though they are 
all derived from a single population. These differences among groups generate the observed heterozygote deficits 
and decreased mean relatedness within samples.

Variance in reproductive success among individuals may be driven by any deterministic and/or stochastic pro-
cesses influencing fitness, and ocean acidification has been shown to strongly influence recruitment processes20. 
Previous studies have demonstrated that climate derived stressors may result in a reduction in the proportion of 
the population that are reproductively active and an increase in reproductive failure (such as in the limpet Patella 
vulgata21). In our study significantly reduced numbers of females in the Low pH site represents an obvious mech-
anism that could increase variance in reproductive success among males, however altered energy allocations and/
or other cryptic factors may also contribute.

The increased variance in reproductive success and consequent genetic drift pulses (within and between 
cohorts) could, in theory, hinder adaptive evolution of populations in response to ocean acidification22,23. 
Acclimatisation can represent an important mechanism for maintaining population persistence under stressful 
conditions23. However, any energetic trade-offs may result in previously unforeseen consequences, and unless 
adaptive evolution can ‘catch up’24, there could be serious implications for population dynamics. This study 
demonstrates that even within a high gene flow system elevated pCO2 concentrations are driving individual and 
population level changes that will impact eco-evolutionary trajectories, and highlights the need for deeper under-
standing of the links between individual effects and (often unknown25) population demographics in order to 
predict and manage the consequences of climate change.

Methods
H. trunculus collection. Collection of H. trunculus (and subsequent experiments) were carried out at 
Levante Bay (38° 25′  N, 14° 57′  E), Vulcano, Italy in May 2013 and May 2014. During the first experimental 
period, individuals used for the reciprocal transplant were collected and deployed in transplantation cages, with 
additional individuals collected in order to measure shell length. During the second sampling period individuals 

Figure 4. Effect of exposure to different pCO2/pH conditions on the mean (±S.E.) dry shell-free body 
mass of male (open bars) and female (grey bars) individuals (length 44 ± 1.2 mm [S.E.]) from the Low pH, 
Control and Reference site. 
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were destructively sampled to determine sex, body mass (shell-free dry mass of soft tissues, including gonads) and 
shell thickness (outer lip). Genetic samples were collected during both experimental periods to test for temporal 
stability of any population structuring or demography. Samples were taken non-destructively by removing a tis-
sue sample from the foot, then returning individuals to their respective sites.

Reciprocal transplant experiment. Using an orthogonal design, six cages per treatment (10 ×  10 ×  10 cm), 
each containing an individual H. trunculus, were distributed across four treatments. Individuals from the elevated 
pCO2 areas were (i) transplanted into control conditions (Control site), or (ii) re-transplanted into the high pCO2 
areas (Low pH site), and individuals collected from the Control site were (iii) transplanted into high pCO2 areas, 
or (iv) re-transplanted into the control conditions. After 14 days exposure, the cages were recovered and trans-
ported to a reservoir tank with site-specific ambient pH prior to placement into respirometers for oxygen con-
sumption rate measurements within 30 min of collection.

Measurement of  M
.
O2. Oxygen consumption rate ( MO2) was determined using stop-flow respirometers 

(volume 460 ml). The respirometers were immersed in a reservoir tank (40 ×  60 ×  30 cm) to maintain natural 
temperature (19.53 ±  0.06 °C), and supplied with fully-oxygenated filtered seawater from either the Control (pH 
8.1 ±  0.1) or Low pH (pH 7.8 ±  0.1) site. Individuals of H. trunculus were placed into a respirometer, and allowed 
to settle to the experimental conditions for 1 h. Water samples (taken via syringe from the respirometers) were 
collected in order to measure the partial pressure of oxygen (pO2), by passing the water sample over a pO2 elec-
trode (E101/E5046 polarographic O2 electrode, Loligo systems, Denmark) connected to an oxygen meter 
(Oxygen Meter model 781, SI Strathkelvin Instruments Limited, Scotland) that was calibrated to 100% aerated 
site-specific seawater. The first water sample was taken following the 1 h settling period, and at the same time, the 
circulation of seawater from the reservoir to the respirometers was stopped. A second water sample was taken 
from each respirometer after 1h (maintained above 17 kPa), and the oxygen consumption rate was determined as 
the change in pO2 between the first and second water samples. This was multiplied by the solubility coefficient for 
oxygen, adjusted for salinity and temperature26, and the volume of water within each respirometer. Oxygen con-
sumption rates were corrected for standard conditions of temperature and pressure (STPD), and presented as 
nmol O2 h−1 mg−1 (wet weight) STPD.

Shell length, sex determination and body mass. Shell length was measured using a digital calliper 
(± 0.1 mm) measuring from the apex to the tip of the siphonal canal (n =  73–85 per site). A macroscopic matura-
tion scale was employed to determine the sex of H. trunculus27 (n =  24–31 per site). Body mass was determined 
by dissecting the body tissue from the shell (n =  24–31 per site), and measured as dry weight (g, 60 °C, 48 hours). 
Shell thickness (outer lip) was measured in the growing tip along the anterior portion of the shell (n =  18 per site), 
using a dissection microscope with 10×  eyepiece graticule (M5A, Wild Heerbruug, Switzerland).

Statistical analyses. Statistical analyses were performed using R. For shell lengths and thickness, differ-
ences were tested by one-way analysis of variance (ANOVA) by Site. For MO2, differences were tested by two-way 
ANOVA by Origin х Exposure, and for body mass, two-way ANOVA by Site ×  Sex. All significant ANOVA 
results were followed by Tukey’s post-hoc tests. Deviation from equal sex ratios were determined using Pearson’s 
chi-squared tests. All data sets were normally distributed and had equal variances.

DNA extraction and genotyping. DNA was extracted from ethanol preserved tissue samples using a 
standard CTAB-chloroform/isoamylalcohol method. Novel microsatellite markers specific to H. trunculus were 
developed by construction of a microsatellite-enriched genomic library following methods outlined in refs28,29.

Individuals collected at two times from each of the three sites (temporal sample 1: n =  48 per site; tempo-
ral sample 2: n =  28–30 per site) were genotyped at four microsatellite loci (GenBank KJ765703-KJ765706) 
by electrophoresis of PCR products on an ABI3500 automated sequencer (Applied Biosystems, Foster City, 
California, USA), with allele sizes determined using GENEMAPPER30. Mitochondrial DNA (mtDNA) was 
assessed by PCR amplification and sequencing of a 602bp fragment of the cytochrome oxidase I gene, which 
was amplified using species-specific primers HtrucF (5′ -ATATGGTCAGGGCTTGTTGG-3′ ) and HtrucR 
(5′ -CCTGCAGGATCAAAGAACG-3′ ) designed from GenBank sequences (EU391577). Sequencing was per-
formed with the PCR primers using BigDye technology (Applied Biosystems). Sequences were edited, aligned 
and trimmed to a standard length (532bp) in BIOEDIT31.

Population genetics statistics. Deviations from Hardy-Weinberg equilibrium were evaluated using exact 
tests in GENEPOP32 and an estimator of standardised genetic variance within populations, FIS

33, calculated in 
FSTAT34. Genetic differences among samples were quantified by FST (Φ ) using FSTAT. FSTAT was used to test for 
significant differences (1000 permutations) in genetic variability (as described by Ar, HS, HE, FIS, FST, relatedness, 
corrected relatedness) between groups.

MtDNA variation was assessed in ARLEQUIN35 using indices of haplotype and nucleotide diversity (h and π, 
respectively) and their variances, with differentiation among samples tested by global and pairwise ΦST.
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