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Blood‑based gene expression 
as non‑lethal tool for inferring 
salinity‑habitat history of European 
eel (Anguilla anguilla)
Francesca Bertolini 1,2*, Mehis Rohtla 3,4, Camilla Parzanini 5, Jonna Tomkiewicz 1 & 
Caroline M. F. Durif 3

The European eel is a facultative catadromous species, meaning that it can skip the freshwater 
phase or move between marine and freshwater habitats during its continental life stage. Otolith 
microchemistry, used to determine the habitat use of eel or its salinity history, requires the sacrifice of 
animals. In this context, blood-based gene expression may represent a non-lethal alternative. In this 
work, we tested the ability of blood transcriptional profiling to identify the different salinity-habitat 
histories of European eel. Eels collected from different locations in Norway were classified through 
otolith microchemistry as freshwater residents (FWR), seawater residents (SWR) or inter-habitat 
shifters (IHS). We detected 3451 differentially expressed genes from blood by comparing FWR and 
SWR groups, and then used that subset of genes in a machine learning approach (i.e., random forest) 
to the extended FWR, SWR, and IHS group. Random forest correctly classified 100% of FWR and SWR 
and 83% of the IHS using a minimum of 30 genes. The implementation of this non-lethal approach 
may replace otolith-based microchemistry analysis for the general assessment of life-history tactics 
in European eels. Overall, this approach is promising for the replacement or reduction of other lethal 
analyses in determining certain fish traits.

The European eel (Anguilla anguilla) is considered a facultative catadromous fish. While it spawns in the ocean, it 
displays several strategies during its continental growth phase by either growing in freshwater systems, skipping 
the freshwater phase or shifting between various salinity habitats (i.e., seawater, brackish water, freshwater)1. Stock 
assessment is almost only based on the freshwater contingent of the species2. Eels living their entire lifecycle in 
seawater (i.e., skipping the freshwater phase) are rarely included in assessments and their proportion relative to 
the whole population is unknown. Moreover, when eels are surveyed, it is unknown whether some have recently 
shifted between habitats. This distribution pattern complicates stock assessment and management of this species.

Otolith microchemistry is a method commonly applied to determine salinity-history in fish and thereby 
their use of habitats. Such analysis rely on the variation of ambient water chemistry, as chemical elements are 
incorporated into the otolith in a predictive manner throughout the life of the fish1,3. Otolith microchemical 
analysis is reliable but requires the sacrifice of the animal. Nonetheless, it is so far the only method which provides 
migratory information throughout the entire life of a fish.

More recently, fatty acid analysis has also been considered to determine habitat salinity history of eel. The use 
of fatty acid biomarkers relies on the variation of dietary sources across habitats (in particular between marine 
and freshwater habitats), which is then reflected in the fatty acid composition of the consumer4. This analysis 
typically requires biopsy of the muscle among other tissues and/or organs (e.g., liver), providing relatively recent 
(i.e., weeks to several months) feeding information.

In this context, blood-based biomarkers may represent a non-lethal alternative to determine individual 
salinity-habitat history. Blood is a living tissue that transports molecules throughout the body. A blood sample 
can, therefore, reflect an individual’s physiological state regarding its health, nutrition, reproductive development, 
stress and/or metabolism5–8. Moreover, blood can be sampled without euthanasia in a high number of species. 
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For identification of possible biomarkers, blood transcriptome is of particular interest, as gene expression is a 
crucial regulator of cell functions. Here, individual variability, physiological status and external factors, highly 
influence gene expression9. Through the improvement of Next Generation Sequencing (NGS) technologies, 
and the development of RNA-seq10 and bioinformatics tools, it is now possible to simultaneously profile the 
transcriptional activity of all genes in a desired tissue, from small starting amount of RNA. This has accelerated 
the discovery of informative genes that can represent biomarkers linked to specific physiological conditions and 
with a wide range of applications9,11,12.

Whole blood transcriptome analysis has been used in several mammalian species, including humans, to iden-
tify biomarker indicators of pathological conditions, immune competences, and reproductive performance13–17. In 
mammalian blood, the only nucleated and hence transcriptionally active cells are the white cells (i.e., leucocytes). 
In contrast, red blood cells (i.e., erythrocytes) of non-mammalian vertebrates are also nucleated and hence tran-
scriptionally active18. This makes non-mammalian blood potentially more informative than mammalian blood.

The recent and limited number of studies targeting blood transcriptomics in non-mammalian vertebrates, 
such as birds and reptiles, show that genetic activity between blood and liver have a high degree of similarity, 
especially in terms of biological processes19,20. The liver is an organ with high functional gene expression diversity, 
and it is frequently used in transcriptomic investigations. Blood transcriptomic-based analyses show applica-
tions in ecology, ecophysiology, and toxicology studies where gene transcripts in the blood have been studied as 
candidate indicators of behavior, physiological condition, environmental impacts and other phenotypic differ-
ences, particularly for wild species 20–23.

Similar outcomes have been produced in the even more limited number of studies in fish, both in experi-
mental and in field settings. A study on fathead minnow Pimephales promelas, investigating exposure to environ-
mentally relevant concentrations of chemical substances, showed how blood responded with a greater number 
of altered genes compared to liver, and how they shared the same biological altered pathways24. Another study 
detected 563 blood transcript biomarkers that can be used for non-lethal sex differentiation in the Asian swamp 
eel Monopterus albus25.

The aim of the present study was to investigate whether whole blood transcriptional profile could be used 
to infer the salinity-habitat history from eels collected in the wild. To do this, we sampled blood, otoliths, and 
muscle tissue from European eels collected in different salinity habitats to compare transcriptomes with the 
otolith microchemistry (entire life) and fatty acid profiles (recent migratory history), which served to validate 
individual eel salinity histories. We identified candidate genes that could be used as transcriptomic-based bio-
markers to discriminate salinity-habitat history and applied a machine learning approach to evaluate the ability 
of those biomarkers to match the classification derived by otolith microchemistry analysis. In recent years, 
machine learning algorithms have been used for the analysis of high-throughput deep sequencing data due to 
their computational efficiency in finding generalizable patterns from high-dimensional data obtained from a 
small number of samples26. Here, we used random forest (RF), a supervised machine learning algorithm that is 
widely used in classification and regression problems27.

Material and methods
Statement.  Sampling and handling of eels in this study were approved by the Norwegian Animal Research 
Authority and all procedures followed local animal welfare regulations (FOTS id 15952) and are in accordance 
with ARRIVE guidelines.

Samples collection.  Eels were collected in July and August 2020, in five sites in Norway which represented 
three different salinity habitats (Fig. 1): freshwater (FW; Arendal and Bergen), brackish water (BW; Arendal), 
and seawater (SW; Bergen and Haugesund). Eels were caught using fyke nets (mesh size at the cod end was 
∼8 mm, knot-to-knot, and 11 mm along the diagonal) and eel pots (mesh size was ∼ 10 mm, knot-to-knot, and 
15 mm diagonal). Brackish waters are often characterized by salinity stratification making it difficult to assign an 
exact salinity value to each location. Therefore, we considered SW sites to correspond to salinities > 30 ppt, BW 
to comprise sites corresponding to salinities between 0.5–30 ppt, and FW sites to be < 0.5 ppt.

A total of 151 individuals were captured and anaesthetized with clove oil and measured for total length (mm), 
wet mass (g), eye diameter (mm) and fin length (mm). These measurements were used to assign a silvering stage, 
where stages I and II represent eels in their growth phase (classic “yellow” phase), stage III indicates a pre-migrant 
phase, and stages IV and V are the two migratory “silver” phases28.

From 60 anaesthetized animals, approximately 600 µl of blood was collected in lithium heparine tubes, mixed 
with 2 volumes of RNA-later (Invitrogen) and stored at − 20 °C prior to RNA extraction. Anaesthetized eels 
were then euthanized and dissected. The sex of all captured eels was determined by macroscopic observation of 
gonads. Skinless, white muscle tissue close to the dorsal fin (∼ 1.0 × 0.5 cm) was sampled for fatty acid analysis. 
Sagittal otoliths were dissected for microchemistry analysis (Table S1).

Otolith and fatty acid‑based classification.  Transversal otolith thin sections were prepared for chemi-
cal analysis of otoliths. Otolith thin sections were analysed for 24  Mg, 43Ca, 55Mn, 88Sr and 137Ba using laser 
ablation inductively coupled plasma mass spectrometry at the University of Tartu (Department of Geology). A 
continuous line scan was traced from the core to the edge using a laser speed of 5 µm/s and laser beam diameter 
of 40 µm. Eels were classified as seawater residents (SWR), freshwater residents (FWR) or inter-habitat shifters 
(IHS) based on established otolith freshwater reference values of Sr:Ca and Ba:Ca (see Rohtla et al.29 for addi-
tional details on chemical analysis and data interpretation).

Lipids were extracted using a modified version of the Folch et al.30 method in a chloroform:methanol (2:1) 
solution, and fatty acids analyzed as methyl esters (FAME) through gas-chromatography and flame ionization 
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detection (GC-FID) at the Department of Chemistry and Biology of Ryerson University, Toronto, Canada. Indi-
vidual fatty acids were identified using a series of standards, including a 39-component FAME mix (GLC-463, 
Nu-Check Prep Inc.), a marine PUFA mix inclusive of 22:1n-11 (11-docosenoic acid methyl ester; PUFA Mix 
No.1, Supelco Inc.), and 18:4n-3 (stearidonic acid; SMB00291, Sigma-Aldrich). The M/F ratio was used to deter-
mine eel diet31 This ratio provides information on a largely marine-(M; higher values) versus freshwater-based 
diet (F; lower values), and hence, indirectly, information on the feeding habitat (i.e., SW, FW), depending on the 
presence of a few characteristic fatty acids in the muscle tissue. Intermediate values were assumed to represent 
eels feeding and living in BW and/or eels regularly moving between SW and FW.

RNA extraction and sequencing and data mining.  RNA extraction was performed following a modi-
fied Trizol (Invitrogen) protocol, starting from 200 µl of mixed whole blood + RNA-later. RNA integrity was 
assessed with Bioanalyzer, to estimate the RNA Integrity Number (RIN) for each of the samples. All samples had 

Figure 1.   Map of the Norwegian locations of European eel sampling.
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RIN > 8 and were therefore evaluated as intact and suitable for sequencing. Paired end mRNA-seq 150 bp was 
performed at Novogene co (China).

Read quality was assessed by Fastqc32. Reads were trimmed with Trimmomatic v0.3833, removing the first 
9 bases at the beginning of the reads, as well as part of reads that had lower quality and reads that were shorter 
than 36 bp after trimming (HEADCROP:9, SLIDINGWINDOW: 4:15, MINLEN:36). Mapping of trimmed reads 
was performed with Tophat2 v0.1334 with default options using the latest version of the European eel reference 
genome and annotation fAngAng1.pri (NCBI; GCF_013347855.1) to guide the read mapping. A further filter 
was performed with Samtools v1.1035, removing reads that mapped in multiple places and sorting the reads 
by read name, as condition to run the reads count. For every samples, reads count at each annotated gene was 
performed with htseq-count36.

Differential expression and gene enrichment.  Transcriptome analysis was performed at first with the 
overall dataset using the Deseq2 R package37 considering the normalized log2-fold change. Differential expres-
sion was then done with the same package considering only FWR and SWR derived from the otolith analyses. 
Here, genes with adj p values < 0.05 were considered as significantly differentially expressed (DE) and used for 
subsequent gene enrichment and Random Forest (RF) analyses.

Gene enrichment was performed with upregulated and downregulated genes separately using Panther (http://​
www.​panth​erdb.​org/), considering Gene Ontology (GO) biological processes as annotation set and Danio rerio as 
reference gene set. Only GO terms with FDR p < 0.05 were considered. Redundant GO terms were removed with 
REVIGO38, utilizing the Danio rerio database and applying SimRel as semantic similarity measure.

Random forest.  In a classification context, RF allows to assign a unit for which the class is unknown to a 
pre-determined group, using the so-called majority rule to aggregate the ‘B’ predictions obtained from the differ-
ent trees in the forest. The final predicted class is the most commonly occurring one. In RF, as trees are fitted to 
bootstrapped subsets of the data set, some observations are left aside each time a tree is built. This leads to a valid 
estimate of the prediction error of a random forest, which is the so-called out-of-bag (OOB) error27. Predictors 
can then be ranked according to their relevance in the classification rule in two measures: the Mean Decrease in 
the Gini Index and the Mean Accuracy Decrease27.

RF on the reduced gene set was performed over normalized gene expression data, obtained through a log-
transformation of the whole gene set with Deseq237. Then, the log-transformed values of the DE genes were used 
for the RF analysis considering the whole sample set. Samples were classified according to the otolith analyses 
into three groups: FWR, SWR, and IHS. RF analysis was performed with the R package randomForest39, with 
700 trees. Each analysis was repeated 10 times and the average values were calculated. From the first round of 
analyses with all the DE genes, Mean Decrease in the Gini Index and the Mean Accuracy Decrease were also 
extracted. Then, genes with no contribution (= 0) to Gini and Accuracy in at least one of the groups (i.e., FWR, 
IHS, SWR) were removed. The remaining genes were sorted according to their Mean Decrease in the Gini Index 
or Mean Accuracy Decrease. RF was then run again with the same parameters for ten times each, to assess the 
OOB and the classification error of panels using the top 150, 100, 50 and 30 genes based on their Mean Decrease 
in the Gini Index and the Mean Accuracy Decrease values.

Results
Comparison between transcriptional profiling, otolith microchemistry and fatty acid pro‑
files.  Among the 60 eels included in this study, 26 individuals were captured in SW, 7 in BW, and 27 in FW. 
Otolith analysis classified 11 of these eels as FWR, 23 as IHS, and 25 eels as SWR, and 1 sample was unclear 
(SWR/IHS). The fatty acid-based classification reported 19 animals as from FW, 19 as BW and 13 as SW, while 
the habitat of 8 eels remained undecided, and 1 not classified (Table S1).

The RNA-seq data production and subsequent trimming yielded 43,008,662 ± 3,559,138 high-quality reads 
used for mapping. Approximately 76.71% ± 2.69 of the reads were successfully mapped to the reference genome 
(Table S1).

Figure 2 shows the principal component analysis (PCA) based on the blood transcriptomic analysis, where 2 
outliers were omitted. Sample clusterization by silvering stage did not show any evident grouping (Fig. 2a), and 
this factor was hence not considered a main driver of variation in this analysis. In contrast, sample clusterization 
by salinity habitat provided a clearer picture, with SW and FW eels occupying two close but distinctive clusters 
on the y-axis, and BW eels encompassing these clusters (Fig. 2b). Labelling according to the results from the 
otolith analysis also highlighted differences between FWR and SWR eels, with IHS samples plotted between the 
two habitats (Fig. 2c). Labelling according to fatty acid profile was concordant with the results provided by the 
previous classifications (Fig. 2d). The uncertain individuals were closer to the “FW” area of the plot for the FW/
BW and closer to the SW area for the SW/BW. Altogether, habitat salinity was a major driver for the clusteriza-
tion of the transcriptomic profile, and otolith-based classification produced the lowest number of uncertainties 
in the classification, as well as a clear division between SWR and FWR.

Differential gene expression between salinity habitats.  DE was calculated comparing FWR and 
SWR eels. The analysis detected 3451 genes with adjpvalue < 0.05. Among these, 1496 genes were upregulated 
when eels were classified as SWR and 1955 genes were upregulated when eels were classified as FWR. Four genes 
were removed from the analysis, as they were outliers based on visual inspection of the plot distribution (Fig. 3, 
table s2).

Enrichment analyses reported 143 enriched Gene Ontology (GO) biological terms for the genes more 
expressed among FWR, and 250 for genes that were more expressed among SWR. After removing redundant 
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terms 76 GO terms for downregulated and 143 Go terms for the upregulated were retained (Tables S3 and S4). 
A total of 19 GO terms overlapped between the two gene sets, and this may indicate common pathways between 
the two environments (i.e., different genes involved in the same pathways). These terms are mainly related to 
regulation and organization of basic cells components, particularly RNA expression (e.g., signal transduction, 
regulation of transcription by RNA polymerase II, organelle organization, chromosome organization). Most 
GO terms revealed distinct pathways that may be activated in different salinity environments. In FWR, GO 
terms related with developmental processes, morphogenesis and immune functions (e.g., cranial skeletal system 
development, cartilage development, hematopoiesis, Wnt signaling and immune system development; Fig. 4 and 
Table S3). In SWR, the most relevant processes were linked to ATP production and ion transport, response to 
stress and fatty-acid oxidation (e.g., energy-coupled proton transport, electrochemical gradient, ATP metabolic 
process, electron transport chain, mitochondrial transport, fatty acid beta-oxidation; Fig. 4 and Table S4).

Repeated PCA based plot considering only the DE genes, but expanded on the whole sample set, enhanced 
the separation between salinity profiles (Fig. 5). The division was particularly clear for the otolith-based analysis, 
where the DE genes were detected (Fig. 5a). There, the only sample that could not be classified in the otolith 
analysis (labelled as “ind”) was classified as IHS after the blood transcriptome-based positioning in the PCA plot. 
Despite being less prominent, a gradient was also detected in samples classified according to their lipid profiles. 
There, it was more evident that the eels with intermediate values of the M/F ratio (i.e., FW/BW and SW/BW) 
tended to be closer to the FW and SW part of the plot respectively (Fig. 5b).

Classification of eel into salinity habitats using random forest.  RF classification, using the com-
plete set of 3451 DE genes, correctly classified 79% of the eels into their salinity habitat (average OOB = 21%). 
Mis-assignments concerned mostly FWR and IHS eel (Table 1). The subset of genes further selected considering 
both Mean Decrease in the Gini Index and Mean Accuracy ranking improved the overall results, especially in the 
correct assignment of FWR individuals. For both ranking categories, correct classification increased by retain-
ing only the top ranked genes until reaching a maximum value of rate of 93.1% (OOB = 6.9%) for both rankings 
(Table 1). The results were quite similar, with 100% of correctly assigned SWR and FWR (CCP FWR = 1 and 

Figure 2.   Principal component analysis (PCA) of the samples based on log2transformed transcriptomic values 
labelled based on their sex, that is silvering stage for female (I, II, III) and male (a), sampling site (b), otolith-
based history (c) and fatty-acid based history (d).
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CCP SWR = 1) in all the four subsets (150-100-50 and 30 genes) and only four misplaced animals belonging to 
IHS in the 50 and 30 genes panels (CCP IHS = 0.84; Table 1). Misclassified samples were B121, B128, B173 and 
B181 which were classified as IHS by otolith analyses, but as SWR by RF, reflecting the recent salinity habitat, 
(i.e., capture location in SW). This overlap in the results derives also from the fact that most genes, at least in the 
30 genes panels (93% for the 30 gene panels), overlapped between the two rankings (Table 2). Among the top 30 
genes for mean decrease Gini and mean accuracy, 10 genes (mctp2a, inppl1b, asap1b, itk, adra1ba, rerea, tead1b, 
nelfb, acin1a and rev1) are included in one or more biological processes previously detected in the enrichment 
analysis. The processes were mainly related to general metabolic and regulation processes, or developmental 
processes, hematopoiesis and immune system (Table S5).

Figure 3.   Distribution of differentially expressed genes, with genes more expressed in freshwater resident 
eels (blue) and genes more expressed in seawater resident eels (green). Black dots represents non-significant 
differentially expressed genes. X-axis reports the intensity of gene expression change expressed in Log2fold 
change.

Figure 4.   Treemap of the downregulated GO term (left) and upregulated Goterm (right). The nested rectangles, 
representing the branches of the tree, are not scaled. See Tables S3 and S4 for p-values and fold changes, as well 
as details of the names and genes.
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Discussion
The salinity-habitat history of European eel can be determined with reasonable accuracy using whole blood 
transcriptomic analysis. This method can replace or reduce lethal-based assessments (e.g., using otolith micro-
chemistry, fatty acid analysis). This is relevant for fish species in general, but more specifically for sensitive and/
or (critically) endangered species, such as the European eel.

In the present study, RNA-seq performed on small blood amounts of 60 adult eels (58 after removing of 
outliers), collected in different salinity habitats (i.e., FW, SW, and BW) was first assessed through PCA plots 
based on the normalized transcriptomic count in relation to sampling location, otolith-based classification, fatty 
acid-based analysis, and to other external drivers linked to reproductive traits that can influence transcriptom-
ics (i.e., silvering stage and sex). Here, we observed a pattern driven by salinity, independently of the means of 
classification (i.e., collection site, otolith microchemistry, or fatty acid profiles) in contrast to silvering stage. 

Figure 5.   Principal component analysis (PCA) (left) and heatmap (right) for the otolith-based (a) and fatty acid 
(b) analyses based on the DE genes. For the heatmap, the intensity of the color is linked with the similarity of the 
sample in pairwise comparisons, where light color indicates higher divergence and darker color indicates higher 
similarity.

Table 1.   OOB error rate (%) and the CPP of the different gene sets: all differentially expressed, and top 150, 
100, 50 and 30 bases on Mean Decrease in the Gini and Mean Accuracy Decrease. CCP = (1-classification 
error).

All DE

Mean decrease in the gini Mean accuracy decrease

150 100 50 30 150 100 50 30

OOB error rate (%) 18.97 8.62 8.62 6.9 6.9 8.62 8.62 6.9 6.9

CCP FWR 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CCP SWR 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CCP IHS 0.67 0.80 0.80 0.84 0.84 0.80 0.80 0.84 0.84
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This clusterization was observed when considering a reduced 3451 DE gene dataset, which was then used for 
machine learning analysis. The number of studies investigating blood transcriptomics in non-mammals is very 
limited, and hence there is no map of candidate genes that could be affected by salinity changes in whole blood.

Physiology related to salinity habitats.  Investigations on the adaptation of teleost fish to different 
salinity conditions have focused on gill and gut epithelium. In these tissues, hypersalinity (i.e., > 35 ppt) leads 
to an increase of Na+, K+-dependent ATPase activities40–42. In plasma, Na+ and Cl− ion levels increase in eury-
haline species41. In our study, SWR eels showed a higher expression of genes related to ATP production (“mito-
chondrial ATP synthesis coupled electron transport”, “ATP synthesis coupled electron transport”, “ATP synthesis 
coupled proton transport”, “ATP biosynthetic process”). Therefore, at least in the blood, the activity seems to 
go in the opposite direction—expressing genes that are involved in ATP production, particularly ATP synthase 
genes (atp5f1e, atp5l, atp5mc3a, atp5mea, atp5mf, atp5pd, atp5pf) and NADH dehydrogenase (ndufa10, ndufa7, 
ndufa8, ndufaf1, ndufb8, ndufc2, ndufs2, ndufs6, ndufv3). Ion transport and homeostasis is in line with the 
plasma of other tissues, with genes related to ion homeostasis, and regulation pathways that are significantly 
enriched in SWR.

In European eel, diet and forage habitat may represent a major driver of variation in the fatty acid composition 
of eel muscle tissue4. In fact, fatty acid-based analysis has a high discriminating power across salinity habitats. 
This is also valid regarding blood when incorporating transcriptomic analysis, even with a lower power than 
otolith-based clusterization. Although not yet investigated in fish, erythrocyte fatty acid composition is consid-
ered one of the most stable biomarker for assessing long-term dietary intake or endogenous biosynthesis and 
metabolism, from several weeks to months prior, in humans43. In this study, genes related to fatty acid oxidation 
and fatty acid beta-oxidation biological processes were more largely represented in the SWR group. Fatty acid 
oxidation is an important process for ATP production and/or fatty acid storage in muscle/adipose tissue. Indeed, 

Table 2.   Genes included in the two 30-gene panel for random forest classification. *Gene unique for the 30 
top gene panel based on gini values. + Gene unique for the 30 top gene panel based on accuracy values.

Gene symbol Gene name chromosome MeanDecreaseAccuracy MeanDecreaseGini

rasal1 rasGAP-activating-like protein 1 NC_049210.1 0.0083 0.4798

mctp2a Multiple C2 domains, transmembrane 2a NC_049216.1 0.0041 0.2491

LOC118211351 Zinc finger E-box-binding homeobox 2-like NC_049213.1 0.0033 0.2325

rnf138 E3 ubiquitin-protein ligase RNF138 NC_049204.1 0.0034 0.2300

LOC118227625 paired box protein Pax-5-like NC_049205.1 0.0037 0.2274

fgd6 FYVE, RhoGEF and PH domain containing 6 NC_049207.1 0.0028 0.2197

inppl1b Nositol polyphosphate phosphatase-like 1b NC_049203.1 0.0034 0.2165

hic2 Hypermethylated in cancer 2 protein-like NC_049210.1 0.0024 0.2131

LOC118231111 Osteoclast stimulatory transmembrane protein-like NC_049207.1 0.0027 0.2094

LOC118208373 filamin-A-like NC_049202.1 0.0034 0.2013

LOC118219836 CCN family member 1-like NC_049211.1 0.0026 0.1967

LOC118225135 cadherin-24-like NC_049204.1 0.0026 0.1909

LOC118229298 C–C motif chemokine 20-like NC_049206.1 0.0025 0.1892

LOC118235156 uncharacterized LOC118235156 NC_049209.1 0.0023 0.1702

asap1b ArfGAP with SH3 domain, ankyrin repeat and PH domain 1b NC_049204.1 0.0021 0.1660

LOC118226320 Nuclear factor interleukin-3-regulated protein-like NC_049204.1 0.0014 0.1520

Itk IL2 inducible T cell kinase NC_049203.1 0.0018 0.1493

adra1ba adrenoceptor alpha 1Ba NC_049209.1 0.0018 0.1461

LOC118233432 Dynein regulatory complex protein 11-like NC_049208.1 0.0018 0.1420

Rerea Arginine-glutamic acid dipeptide (RE) repeats a NC_049213.1 0.0016 0.1390

tead1b TEA domain family member 1b NC_049203.1 0.0015 0.1293

hivep3 Transcription factor HIVEP3 NC_049201.1 0.0013 0.1276

LOC118235830 myelin-associated glycoprotein-like NC_049201.1 0.0017 0.1271

LOC118211187 forkhead box protein J3-like NC_049213.1 0.0016 0.1265

nelfb Negative elongation factor complex member B NC_049210.1 0.0012 0.1190

acin1a Apoptotic chromatin condensation inducer 1a NC_049208.1 0.0013 0.1189

mob3b* mob kinase activator 3b NC_049214.1 0.0011 0.1158

zap70 tyrosine-protein kinase ZAP-70 NC_049204.1 0.0013 0.1150

rev1* REV1 DNA directed polymerase NC_049215.1 0.0012 0.1143

LOC118229170 isthmin-2-like NC_049206.1 0.0013 0.1113

agpat4+ 1-acylglycerol-3-phosphate O-acyltransferase 4 (lysophosphatidic acid acyltransferase, delta) NC_049218.1 0.0013 0.1046

epb41l1+ Band 4.1-like protein 1 NC_049213.1 0.0012 0.0995
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at the same age SW eels were larger than FW eels29. Fatty acid oxidation that mainly occurs in the mitochondria, 
involves a repeated sequence of reactions that result in the conversion of fatty acids to acetyl-CoA44,45. This is 
concordant with what was observed in our data, where ATP synthesis is also upregulated in the SWR. In mam-
mals, erythrocytes do not oxidize fatty acids because they lack mitochondrial or aerobic metabolism, thus relying 
on cytosolic energy generation instead. As for fish, even if there are reductions in biosynthetic processes and in 
the ability to mount heat shock responses with cell aging (common in other vertebrates), erythrocytes of fish do 
not appear to lose functions like the capacity to perform ion and gas transport, as total protein concentration in 
young red blood cells is not affected by cell age46,47.

Osmoregulation is one of the most energetically costly metabolic activities in teleost, as both sea- and fresh-
water deviate from the salinity of fish body fluids48. Therefore, a large amount of energy is consumed by fish 
to maintain their osmotic homeostasis during acclimation to either freshwater or hyper-saline water49,50. At a 
molecular level, this can have an impact on fish development, growth, reproduction, and other physiological and 
metabolic activities50. This is in line with the high number of identified GO terms that are linked to development 
and morphogenesis and to phenotypical observation of European eels, where size was bigger in SWR eels com-
pared to FWR and IHS at the same age4,29. About 300 genes that are linked to morphogenesis and development 
were upregulated in FWR and not in SWR. Since development is a complex matter that requires activation and 
suppression of several pathways, at the present state, it is not possible to provide a more detailed description of 
these pathways. To be noted is the presence of biological processes related to the immune system development 
and regulation among the pathways, which were enhanced in FWR. Variations in water salinity may impact the 
immune function of fish51,52. Here, the GO term “cell–cell signaling by wnt” was detected. The Wnt signaling 
pathway is critical for adult tissue maintenance, remodeling and regeneration, embryo development, and many 
cellular processes that include cell motility and cytoskeleton restructuring53. The Wnt signaling pathway is 
associated with cellular remodeling in fishes, and it may play a role in salinity adaptation54,55. The Wnt signaling 
also regulates the progenitor cell homeostasis, hereby controlling hematopoiesis that was also upregulated in the 
FWR group. Even if two of the major genes involved in this pathway (i.e. cdc42 and wnt11) were not significantly 
differentially expressed, other genes such as ccdc88c, tet2, tet3 and lgr4, which have a known function in this 
pathway, were differentially expressed in our study56–58.

Biomarkers for classification of salinity‑life history.  RF performed using the DE genes as first list, 
and then reduced using different rankings allowed the correct assignment of all eel samples (except four) into 
their salinity habitat. The misclassification of these four samples was detected in all gene panels and were clas-
sified as IHS by otolith analysis and as BW by fatty acid analysis. Particularly, otolith analysis detected that 
those misclassified samples had early FW experience (Fig. 6). Otolith analysis can further characterize IHS, by 
estimating when and how many times, shifts between FW and SW habitats have occurred29. This indicates that 
transcriptomics analysis may fail to show very early FW experience. However, in order to clarify this, more sub-
categories among the IHS group to be run with RF would be needed. Despite RF tolerating low sample numbers, 
subcategories of IHS group were not performed in RF analysis due to our relatively limited sample size.

Figure 6.   Otolith Sr:Ca (blue) and Ba:Ca (green) profiles of the four inter-habitat shifting eels (Anguilla 
anguilla) misclassified by the random forest analysis on blood transcriptomes.
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Machine learning is useful to infer phenotypes to samples whose phenotype is unknown or not given in the 
analysis (i.e., test population) based on information collected from samples with the available phenotype(s) of 
interest (i.e., training population). In order to maximize the usage of our samples in this work, we did not split 
our dataset into a training and test. In fact, RF uses bootstrap to create random permutation in the data that 
leads to the definition of an OOB population for each individual tree in the forest. The OOB population consists 
of all the samples that are not included in the bootstrap population used to build a given single tree and that 
can be used to obtain internal unbiased estimates of the prediction error and to evaluate variable importance39. 
The ability of transcriptomic-based biomarkers to distinguish with a relatively high level of accuracy (75%) eels 
with habitat-shifting history (IHS) from residents (FWR or SWR) regardless of the salinity at the sampling site 
suggests that salinity habitat history may leave a fingerprint in blood transcriptomics. This could hypothetically 
be through e.g., epigenetic mechanisms; however, further studies would be needed to decipher this aspect. In 
this context, controlled laboratory studies might help to identify how long these transcriptional signals reflecting 
different environments last.

Conclusions
Our investigation showed that blood transcriptional profile is influenced by salinity habitat history. The com-
bination of machine learning and transcriptomic profiling allowed the assessment of salinity-habitat history 
with high accuracy, including habitat shifting behaviors. As habitat shifting behaviors may involve several shifts 
throughout the eel’s continental life, additional studies will be needed to assess the extent of the prediction 
power of blood transcriptomics. Still, for complete reconstructions of IHS chronological salinity history, otolith 
microchemistry seems inevitable. However, with an adequate increase and maintenance of the training popula-
tion, using otolith microchemistry analysis as known phenotype, there may be the possibility to greatly reduce, 
and in the future substitute, otolith microchemistry analysis for general estimation of fish salinity history. This 
approach is promising for the replacement or reduction of other lethal analyses in fish research, especially for 
critically endangered species, such as the European eel. Collecting blood and determining salinity-habitat his-
tory during annual monitoring surveys would provide important information improving management of this 
species. Overall knowledge on eel habitat use, such as migratory season and proportion of individuals that shift 
habitat, should be considered in the species monitoring. This could highlight the importance of this contingent 
(in terms of numbers) and the need to improve migratory conditions and habitat availability.

Data availability
Raw RNA-seq data are available on EMBL-EBI under Accession Number PRJEB52485.
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