1,136 research outputs found

    Effect of the Structure of Amido-polynitrogen Molecules on the Complexation of Actinides

    Get PDF
    AbstractThe complexation and solvent extraction of Eu(III) and actinides in different oxidation states (Am(III), Pu(IV), Np(V)) by bitopic molecules with a dipyridyl-phenanthroline cycle as nitrogen unit and one or two amido functions are described. The complexation has been studied in methanol-water solution with hydrophilic molecules to enhance knowledge about this new family of ligands and to identify the most interesting structural effect. Some extraction tests have been performed with lipophilic molecules of the family to check the possible utility of the new class of ligands under representative fuel reprocessing conditions. These first studies have demonstrated that the presence of a preorganized N-donors unit like dipyridyl-phenanthroline improves the ligand's affinity for actinides and its An/Ln selectivity

    Effet d'une expérimentation de brassage artificiel epilimnique par aération sur les poussées cyanobactériennes dans la retenue hypereutrophe de Grangent (France)

    Get PDF
    Dans la retenue hypereutrophe de Grangent, le phytoplancton estival est dominé par la cyanobactérie Microcystis aeruginosa. Dans le but de lutter contre la formation de ces blooms cyanobactériens, une expérimentation de brassage artificiel épilimnique par aération a été réalisée en 1997-1998. Ce dispositif avait pour but de créer des turbulences supprimant l'avantage adaptatif que constitue, chez M. aeruginosa, la faculté de réguler sa flottabilité. Il devait également permettre l'homogénéisation des teneurs en oxygène dissous, la réduction des pics de pH, de la turbidité des eaux superficielles et des teneurs en ammonium.Les résultats escomptés ont été vérifiés pour les paramètres physicochimiques. Les valeurs se sont révélées plus homogènes, mais seulement à proximité des lignes de brassage et uniquement jusqu'à 10 m de profondeur. En revanche, les blooms cyanobactériens n'ont pas été réduits. Il apparaît même au contraire que, sous l'influence du mélange, les cyanobactéries ont eu à leur disposition une plus grande quantité de nutriments qu'elles ont utilisés pour constituer des réserves glucidiques. Ainsi, en aval de la zone brassée, ces réserves ont permis une synthèse protéique plus importante.Sur la retenue de Grangent, le dispositif de brassage peut offrir une solution palliative du point de vue touristique en limitant l'accumulation de cyanobactéries en surface, mais il ne permet pas d'éliminer, ni même de diminuer, les proliférations de M. aeruginosa en période estivale.In the reservoir of Grangent, a highly eutrophic lake located on the upper part of the Loire River, about 10 miles south of Saint-Étienne (France), Microcystis aeruginosa usually dominates the phytoplankton community in late summer and early autumn for many years. Mass developments of this cyanobacterium led to serious difficulties in multi-purpose usage. In order to fight against blooms, an epilimnic artificial mixing was experimented. M. aeruginosa is adapted to stable stratification of the water column. Therefore, partial destratification or bubbling with air are employed to replace M. aeruginosa by better grazable, non- " blooming " and non-toxic species. This cyanobacterium is supposed to lose its advantage of buoyancy and to reduce his growth. This system was also employed to reduce peaks of pH, turbidity of surface waters and concentration of NH4 and to homogenize the dissolved oxygen concentration inside the water column. Three lines of mixing were tested in 1998: one located at "Châtelet", upstream of reservoir, measuring 700 m at 11 m depth; one near the beach of Saint-Victor, with the same length and immersed to 15 m depth and, finally, a line of 400 m, near the port, at 16 m depth (figure 1).Data were collected from representative sites, upstream, near and downstream the artificial mixing. They were sampled weekly since April to November 1998. At each site the vertical profiles of temperature and dissolved oxygen were measured (figure 2). For each sample, the parameters following were analyzed: pH, NO3, NH4, PO4, carbohydrates, proteins, chlorophyll a and phytoplankton enumeration.Concerning the physicochemical parameters, the assumptions were checked: the values appeared more homogeneous near the lines of mixing than at the other stations. For example, the average temperatures varied between 20,6°C (at 10 m depth) and 21,3°C (at 0,5 m depth) at Saint-Victor. This variation reached 1,3°C at the station Camaldules. On the other hand, this effect was perceived only up to 10 m of depth and at a limited distance of mixing.In the same way, the colonies of M. aeruginosa were mixed in the water column but only up 10 m depth and near mixing. Moreover, their growth has not decreased on the whole of reservoir. In period of bloom (August 25), G/P ratio was higher in the mixing zone than in the neighbourhoods, primarily because of an increase in carbohydrates (figure 3). In the mixed zone, M. aeruginosa seemed to benefit greater quantity of mineral elements it could use to constitute carbohydrates reserves (figure 4). In this way, when the conditions that became less favourable, like downstream, cyanobacteria were able to follow their development by synthesizing proteins starting from their reserves in carbohydrates.In the reservoir of Grangent, artificial mixing did not allow to fight effectively against blooms of cyanobacteria. Colonies of M. aeruginosa were simply diluted in the water column near mixing but did not reduce their growth

    10 Years of Object-Oriented Analysis on H1

    Full text link
    Over a decade ago, the H1 Collaboration decided to embrace the object-oriented paradigm and completely redesign its data analysis model and data storage format. The event data model, based on the RooT framework, consists of three layers - tracks and calorimeter clusters, identified particles and finally event summary data - with a singleton class providing unified access. This original solution was then augmented with a fourth layer containing user-defined objects. This contribution will summarise the history of the solutions used, from modifications to the original design, to the evolution of the high-level end-user analysis object framework which is used by H1 today. Several important issues are addressed - the portability of expert knowledge to increase the efficiency of data analysis, the flexibility of the framework to incorporate new analyses, the performance and ease of use, and lessons learned for future projects.Comment: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Researc

    Simulations of protostellar collapse using multigroup radiation hydrodynamics. I. The first collapse

    Full text link
    Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodynamics. However, dust opacities which dominate extinction show large variations as a function of frequency. In this paper, we used frequency-dependent radiative transfer to investigate the influence of the opacity variations on the properties of Larson's first core. We used a multigroup M1 moment model in a 1D radiation hydrodynamics code to simulate the spherically symmetric collapse of a 1 solar mass cloud core. Monochromatic dust opacities for five different temperature ranges were used to compute Planck and Rosseland means inside each frequency group. The results are very consistent with previous studies and only small differences were observed between the grey and multigroup simulations. For a same central density, the multigroup simulations tend to produce first cores with a slightly higher radius and central temperature. We also performed simulations of the collapse of a 10 and 0.1 solar mass cloud, which showed the properties of the first core to be independent of the initial cloud mass, with again no major differences between grey and multigroup models. For Larson's first collapse, where temperatures remain below 2000 K, the vast majority of the radiation energy lies in the IR regime and the system is optically thick. In this regime, the grey approximation does a good job reproducing the correct opacities, as long as there are no large opacity variations on scales much smaller than the width of the Planck function. The multigroup method is however expected to yield more important differences in the later stages of the collapse when high energy (UV and X-ray) radiation is present and matter and radiation are strongly decoupled.Comment: 9 pages, 5 figures, accepted for publication in A&

    Theoretical principles of petroleum hydrogeology of the West Siberian megabasin (WSMB)

    Get PDF
    Comprehensive study of the chemical and gas composition, temperatures, levels, pressure of deep underground water in deep wells is associated with the beginning of the systematic development of the oil and gas potential in Western Siberia and the first discovery of large deposits here. The development of new branches of hydrogeology is due to the fact of more and more available data. Thus, fundamental understandings of the WSMB hydrogeological conditions are being translated into new theories. Geodynamically, the WSMB structure was revised and based on hydrogeological data, regional and local prediction of oil and gas occurrence exploration criteria were developed. Based on the dispersion halo water-dissolved substance theory, exploration methodology of "neglected" deposits were formulated, conceptual issues of technogenic changes of oil and gas hydrogeosphere areas were being developed

    Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model

    Full text link
    We investigate here the ability of a Green-Naghdi model to reproduce strongly nonlinear and dispersive wave propagation. We test in particular the behavior of the new hybrid finite-volume and finite-difference splitting approach recently developed by the authors and collaborators on the challenging benchmark of waves propagating over a submerged bar. Such a configuration requires a model with very good dispersive properties, because of the high-order harmonics generated by topography-induced nonlinear interactions. We thus depart from the aforementioned work and choose to use a new Green-Naghdi system with improved frequency dispersion characteristics. The absence of dry areas also allows us to improve the treatment of the hyperbolic part of the equations. This leads to very satisfying results for the demanding benchmarks under consideration

    Assessment of MERIS ocean color data products for European seas

    Get PDF
    The accuracy of marine data products from the Medium Resolution Imaging Spectrometer (MERIS) operated on board the Envisat platform is investigated with the aid of in situ geographically distributed measurements from different European seas. The assessment focuses on standard products from the 2012 data update commonly identified as 3rd Reprocessing. Results indicate atmospherically corrected data affected by a negative bias of several tens percent at the 413 nm center wavelength, significantly decreasing to a few percent at 560 nm and increasing again at 665 nm. Such an underestimate at the blue center wavelengths leads to an average overestimate of the algal-1 MERIS pigment index largely exceeding 100% for the considered European seas. A comparable overestimate is also observed for the algal-2 pigment index independently determined from top-of-atmosphere radiance through the application of neural networks
    corecore