research

Effet d'une expérimentation de brassage artificiel epilimnique par aération sur les poussées cyanobactériennes dans la retenue hypereutrophe de Grangent (France)

Abstract

Dans la retenue hypereutrophe de Grangent, le phytoplancton estival est dominé par la cyanobactérie Microcystis aeruginosa. Dans le but de lutter contre la formation de ces blooms cyanobactériens, une expérimentation de brassage artificiel épilimnique par aération a été réalisée en 1997-1998. Ce dispositif avait pour but de créer des turbulences supprimant l'avantage adaptatif que constitue, chez M. aeruginosa, la faculté de réguler sa flottabilité. Il devait également permettre l'homogénéisation des teneurs en oxygène dissous, la réduction des pics de pH, de la turbidité des eaux superficielles et des teneurs en ammonium.Les résultats escomptés ont été vérifiés pour les paramètres physicochimiques. Les valeurs se sont révélées plus homogènes, mais seulement à proximité des lignes de brassage et uniquement jusqu'à 10 m de profondeur. En revanche, les blooms cyanobactériens n'ont pas été réduits. Il apparaît même au contraire que, sous l'influence du mélange, les cyanobactéries ont eu à leur disposition une plus grande quantité de nutriments qu'elles ont utilisés pour constituer des réserves glucidiques. Ainsi, en aval de la zone brassée, ces réserves ont permis une synthèse protéique plus importante.Sur la retenue de Grangent, le dispositif de brassage peut offrir une solution palliative du point de vue touristique en limitant l'accumulation de cyanobactéries en surface, mais il ne permet pas d'éliminer, ni même de diminuer, les proliférations de M. aeruginosa en période estivale.In the reservoir of Grangent, a highly eutrophic lake located on the upper part of the Loire River, about 10 miles south of Saint-Étienne (France), Microcystis aeruginosa usually dominates the phytoplankton community in late summer and early autumn for many years. Mass developments of this cyanobacterium led to serious difficulties in multi-purpose usage. In order to fight against blooms, an epilimnic artificial mixing was experimented. M. aeruginosa is adapted to stable stratification of the water column. Therefore, partial destratification or bubbling with air are employed to replace M. aeruginosa by better grazable, non- " blooming " and non-toxic species. This cyanobacterium is supposed to lose its advantage of buoyancy and to reduce his growth. This system was also employed to reduce peaks of pH, turbidity of surface waters and concentration of NH4 and to homogenize the dissolved oxygen concentration inside the water column. Three lines of mixing were tested in 1998: one located at "Châtelet", upstream of reservoir, measuring 700 m at 11 m depth; one near the beach of Saint-Victor, with the same length and immersed to 15 m depth and, finally, a line of 400 m, near the port, at 16 m depth (figure 1).Data were collected from representative sites, upstream, near and downstream the artificial mixing. They were sampled weekly since April to November 1998. At each site the vertical profiles of temperature and dissolved oxygen were measured (figure 2). For each sample, the parameters following were analyzed: pH, NO3, NH4, PO4, carbohydrates, proteins, chlorophyll a and phytoplankton enumeration.Concerning the physicochemical parameters, the assumptions were checked: the values appeared more homogeneous near the lines of mixing than at the other stations. For example, the average temperatures varied between 20,6°C (at 10 m depth) and 21,3°C (at 0,5 m depth) at Saint-Victor. This variation reached 1,3°C at the station Camaldules. On the other hand, this effect was perceived only up to 10 m of depth and at a limited distance of mixing.In the same way, the colonies of M. aeruginosa were mixed in the water column but only up 10 m depth and near mixing. Moreover, their growth has not decreased on the whole of reservoir. In period of bloom (August 25), G/P ratio was higher in the mixing zone than in the neighbourhoods, primarily because of an increase in carbohydrates (figure 3). In the mixed zone, M. aeruginosa seemed to benefit greater quantity of mineral elements it could use to constitute carbohydrates reserves (figure 4). In this way, when the conditions that became less favourable, like downstream, cyanobacteria were able to follow their development by synthesizing proteins starting from their reserves in carbohydrates.In the reservoir of Grangent, artificial mixing did not allow to fight effectively against blooms of cyanobacteria. Colonies of M. aeruginosa were simply diluted in the water column near mixing but did not reduce their growth

    Similar works