216 research outputs found

    Maintenance of Androdioecy in the Freshwater Shrimp, Eulimnadia Texana: Field Estimates of Inbreeding Depression and Relative Male Survival

    Get PDF
    Androdioecy is a rare form of reproduction, only found in a few plant and animal species, wherein males co-exist with hermaphrodites. This particular form of mixed mating (mixtures of outcrossing and self-fertilization) is predicted to be evolutionarily unstable, with most androdioecious populations thought to be in a transition from hermaphroditism to dioecy, or vice versa. One well-studied androdioecious species is the freshwater clam shrimp Eulimnadia texana. A model by Otto et al. (1993), exploring the stability of this androdioecious system, predicts that males can co-exist with hermaphrodites when males fertilize an average of over twice the number of offspring that an average hermaphrodite produces in a lifetime. This value proportionally increases if males survive less well than hermaphrodites, and proportionally decreases with increased inbreeding depression. In the present study, we measured relative male longevity and inbreeding depression using laboratory-produced selfed and outcrossed eggs reared in the field. Males had lower survival than hermaphrodites in both mating treatments, but the survival difference was greater in the outcrossed relative to the selfed mating treatments (19 vs 9% difference). Inbreeding depression (6) was estimated at 0.58-0.69, depending on the level of selfing among the parents in the outcrossed treatments. Both estimates of relative male viability and inbreeding depression corresponded well with earlier laboratory estimates of these parameters. Thus the within-pond dynamics outlined in the model of Otto et al. (1993), which are driven by high inbreeding depression and high relative male fertility, may still explain the maintenance of androdioecy in these shrimp. Field estimates of male mating effectiveness are required as a final test of the accuracy of this model

    Aerial Photography Techniques to Estimate Populations of Laughing Gull Nests in Jamaica Bay, New York, 1992-1995

    Get PDF
    We evaluated aerial photography (full coverage, using fixed-wing aircraft) and aerial video (transects, using helicopter) surveys to estimate the population of Laughing Gull (Larus ahicilla) nests in Jamaica Bay, New York, during June 1992-1995. We counted 4,920 nests in the colony using aerial photography and estimated 5,367 nests using aerial video in 1992. In 1993-1995, we respectively counted 5,691,5,095, and 6,126 nests in the colony using aerial photography, and estimated from ground plots that our counts differed from the actual number of nests by means of -9% to 1%. Overall (1993-1995) correction factors (by which to multiply the aerial photography nest counts) to estimate the mean and 95% lower and upper CI range of the nest population were 1.04, 0.96 and 1.13, respectively. Ninety-seven percent of nests identified using aerial photography or video had 21 adult Laughing Gull present or within 1 m of the nest. The aerial video survey was less expensive (2,100UnitedStatescurrency)thantheaerialphotographysurvey(2,100 United States currency) than the aerial photography survey (4,000). The estimated cost of a total count of nests from the ground is 6,7006,700- 9,600. The aerial video survey provided an accurate estimate of the number of nests. Full coverage aerial photography also provided an accurate estimate of nests in addition to habitat, nest distribution and nest density data

    Atypical Integration of Sensory-to-Transmodal Functional Systems Mediates Symptom Severity in Autism.

    Get PDF
    A notable characteristic of autism spectrum disorder (ASD) is co-occurring deficits in low-level sensory processing and high-order social interaction. While there is evidence indicating detrimental cascading effects of sensory anomalies on the high-order cognitive functions in ASD, the exact pathological mechanism underlying their atypical functional interaction across the cortical hierarchy has not been systematically investigated. To address this gap, here we assessed the functional organisation of sensory and motor areas in ASD, and their relationship with subcortical and high-order trandmodal systems. In a resting-state fMRI data of 107 ASD and 113 neurotypical individuals, we applied advanced connectopic mapping to probe functional organization of primary sensory/motor areas, together with targeted seed-based intrinsic functional connectivity (iFC) analyses. In ASD, the connectopic mapping revealed topological anomalies (i.e., excessively more segregated iFC) in the motor and visual areas, the former of which patterns showed association with the symptom severity of restricted and repetitive behaviors. Moreover, the seed-based analysis found diverging patterns of ASD-related connectopathies: decreased iFCs within the sensory/motor areas but increased iFCs between sensory and subcortical structures. While decreased iFCs were also found within the higher-order functional systems, the overall proportion of this anomaly tends to increase along the level of cortical hierarchy, suggesting more dysconnectivity in the higher-order functional networks. Finally, we demonstrated that the association between low-level sensory/motor iFCs and clinical symptoms in ASD was mediated by the high-order transmodal systems, suggesting pathogenic functional interactions along the cortical hierarchy. Findings were largely replicated in the independent dataset. These results highlight that atypical integration of sensory-to-high-order systems contributes to the complex ASD symptomatology

    Mathematical modeling and design of layer crystallization in a concentric annulus with and without recirculation

    Get PDF
    A solution layer crystallization process in a concentric annulus is presented that removes the need for filtration. A dynamic model for layer crystallization with and without a recirculation loop is developed in the form of coupled partial differential equations describing the effects of mass transfer, heat transfer, and crystallization kinetics. The model predicts the variation of the temperature, concentration, and dynamic crystal thickness along the pipe length, and the concentration and temperature along the pipe radius. The model predictions are shown to closely track experimental data that were not used in the model's construction, and also compared to an analytical solution that can be used for quickly obtaining rough estimates when there is no recirculation loop. The model can be used to optimize product yield and crystal layer thickness uniformity, with constraints on the supersaturation to avoid bulk nucleation by adjusting cooling temperatures in the core and jacket. © 2013 American Institute of Chemical Engineers

    Head Position in Stroke Trial (HeadPoST)- sitting-up vs lying-flat positioning of patients with acute stroke: study protocol for a cluster randomised controlled trial

    Get PDF
    Background Positioning a patient lying-flat in the acute phase of ischaemic stroke may improve recovery and reduce disability, but such a possibility has not been formally tested in a randomised trial. We therefore initiated the Head Position in Stroke Trial (HeadPoST) to determine the effects of lying-flat (0°) compared with sitting-up (≥30°) head positioning in the first 24 hours of hospital admission for patients with acute stroke. Methods/Design We plan to conduct an international, cluster randomised, crossover, open, blinded outcome-assessed clinical trial involving 140 study hospitals (clusters) with established acute stroke care programs. Each hospital will be randomly assigned to sequential policies of lying-flat (0°) or sitting-up (≥30°) head position as a ‘business as usual’ stroke care policy during the first 24 hours of admittance. Each hospital is required to recruit 60 consecutive patients with acute ischaemic stroke (AIS), and all patients with acute intracerebral haemorrhage (ICH) (an estimated average of 10), in the first randomised head position policy before crossing over to the second head position policy with a similar recruitment target. After collection of in-hospital clinical and management data and 7-day outcomes, central trained blinded assessors will conduct a telephone disability assessment with the modified Rankin Scale at 90 days. The primary outcome for analysis is a shift (defined as improvement) in death or disability on this scale. For a cluster size of 60 patients with AIS per intervention and with various assumptions including an intracluster correlation coefficient of 0.03, a sample size of 16,800 patients at 140 centres will provide 90 % power (α 0.05) to detect at least a 16 % relative improvement (shift) in an ordinal logistic regression analysis of the primary outcome. The treatment effect will also be assessed in all patients with ICH who are recruited during each treatment study period. Discussion HeadPoST is a large international clinical trial in which we will rigorously evaluate the effects of different head positioning in patients with acute stroke. Trial registration ClinicalTrials.gov identifier: NCT02162017 (date of registration: 27 April 2014); ANZCTR identifier: ACTRN12614000483651 (date of registration: 9 May 2014). Protocol version and date: version 2.2, 19 June 2014

    Atypical functional connectome hierarchy in autism.

    Get PDF
    One paradox of autism is the co-occurrence of deficits in sensory and higher-order socio-cognitive processing. Here, we examined whether these phenotypical patterns may relate to an overarching system-level imbalance-specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Combining connectome gradient and stepwise connectivity analysis based on task-free functional magnetic resonance imaging (fMRI), we demonstrated atypical connectivity transitions between sensory and higher-order default mode regions in a large cohort of individuals with autism relative to typically-developing controls. Further analyses indicated that reduced differentiation related to perturbed stepwise connectivity from sensory towards transmodal areas, as well as atypical long-range rich-club connectivity. Supervised pattern learning revealed that hierarchical features predicted deficits in social cognition and low-level behavioral symptoms, but not communication-related symptoms. Our findings provide new evidence for imbalances in network hierarchy in autism, which offers a parsimonious reference frame to consolidate its diverse features

    Differences in subcortico-cortical interactions identified from connectome and microcircuit models in autism.

    Get PDF
    The pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism

    Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    Get PDF
    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits
    corecore