75 research outputs found

    Notes on age determination, size and age structure, longevity, and growth of co-occurring macrourid fishes

    Get PDF
    ACKNOWLEDGEMENTS We are grateful to crew and colleagues who sampled and processed macrourids on the MARECO and ECOMAR cruise, to Ms Hege Ø Hansen for assistance in the otolith laboratory, and to home institutions and the Alfred P Sloan Foundation for financial support. An early version of the results was submitted in partial fulfilment of the requirements for the MSc degree of R.H. Fundings: Data for this paper were collected on cruises funded by Norway and the United Kingdom (Natural Environment Research Council). In addition to institutional funding, the work benefitted from a grant to the ecosystems of the mid-atlantic ridge (MAR-ECO) Programme from the Alfred P. Sloan Foundation, New York, USA.Peer reviewedPublisher PD

    Inventory of Otolith Collections and Ageing Work on North East Atlantic Deep Water Fish Species

    Get PDF
    The result of a questionnaire sent to 38 institutes, indicate that a broad range of unpublished raw data exist on many of the deep water fish species in the north east Atlantic and Mediterranean. Of the 18 fish classified by ICES as 'primary' deep water species, one or more of the six Coryphaenoides rupestris, Mora moro, Aphanopus carbo, Hoplostethus atlanticus, Phycis blennoides, Helicolenus dactylopterus were common to most of the institutes which completed the questionnaire. Institutes which possessed some form of otolith or ageing data on these primary fish are grouped by species. A table of institutions which have some form of data on other deep water species (including sharks, rays and Chimaerids) is presented. A list of the main deep water species is given with their English, French, and Spanish common names. In general, there was a very positive response to the setting up of an otolith exchange scheme (by correspondence), as an initial approach to the convening of a deep water ageing workshop. The questionnaire did not provide any indications as to the extent or quality of the various data sets

    Bathypelagic Fish Association with the Mid-Atlantic Ridge

    Get PDF
    The bathypelagic zone, Earth’s largest living space, is essentially boundless in three dimensions for most of its extent, structured only by fluid features (e.g., salinity, temperature) of the seawater itself. However, near certain topographic features this zone intersects the seafloor. The mid-ocean ridge system is by far the largest of these features. Unlike the ecosystems of the continental margins, the mid-ocean ridge systems do not receive terrigenous nutrient inputs. Thus, the deep-water fauna associated with mid-ocean ridges ultimately depend on the generally limited local surface production. Despite this limited surface production, there is evidence that near-ridge demersal fish biomass is increased above the mid-Atlantic Ridge (MAR). Two processes by which organic matter can be transferred to the benthic boundary layer include: 1) sinking of aggregates and the carcasses of larger animals, and 2) vertical migration of living animals. To understand the dynamics of the latter process, deep-pelagic and demersal fishes were studied during the 2004 G.O. Sars Expedition, a field campaign of MAR-ECO. MAR-ECO, a Census of Marine Life project, is an international study of the animals inhabiting the northern Mid-Atlantic. Utilizing multiple technologies the water column (to 3500 m) and benthic realms were sampled. Taxonomic analysis to date has revealed over 300 fish species, with ongoing analysis expected to reveal more species, some new to science. Pelagic sampling collected 207 species, with typical orders dominating. Bottom trawling collected ca. 175 species, with typical demersal families, but also pelagic families occurring in numbers higher than would be expected by contamination alone. Discrete, near-bottom pelagic trawls confirmed this observation. In all, 84 species were caught in both pelagic and bottom trawls, with some species showing enhanced abundances in the near-bottom boundary layer, suggesting that overlap of deep-pelagic and demersal faunas is likely a key process regulating mid-ocean ridge community structure

    Catchability of pelagic trawls for sampling deep-living nekton in the mid-North Atlantic

    Get PDF
    Material collected in summer 2004 from the Mid-Atlantic Ridge between Iceland and the Azores with three pelagic trawls was used to estimate relative catchabilities of common fish, cephalopod, decapod, and jellyfish species. Catchability is defined as the ratio of numbers caught between two trawls, standardized for towed distance. Taxon-specific catchability coefficients were estimated for two large pelagic trawls with graded meshes, using a smaller pelagic trawl with a uniform mesh size as the reference trawl. Two of the trawls were equipped with multiple opening–closing codends that allowed sampling of different depth layers. Generalized linear and mixed models suggest that most of the taxa have catchabilities much lower than expected from the area of opening alone, indicating that only a few species are herded by the large mesh at the mouth of larger trawls. Catchability coefficients across taxa show a very large spread, indicating that the sampled volume for the larger trawls with graded meshes was highly taxon-specific. Part of this variability can be explained by body size and taxonomic group, the latter probably reflecting differences in body form and behaviour. The catchability estimates presented here form the basis for combining data for quantitative analyses of community structure

    Man and the last great wilderness: human impact on the deep sea

    No full text
    he deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods

    Density‐ and size‐dependent mortality in fish early life stages

    Get PDF
    The importance of survival and growth variations early in life for population dynamics depends on the degrees of compensatory density dependence and size dependence in survival at later life stages. Quantifying density‐ and size‐dependent mortality at different juvenile stages is therefore important to understand and potentially predict the recruitment to the population. We applied a statistical state‐space modelling approach to analyse time series of abundance and mean body size of larval and juvenile fish. The focus was to identify the importance of abundance and body size for growth and survival through successive larval and juvenile age intervals, and to quantify how the dynamics propagate through the early life to influence recruitment. We thus identified both relevant ages and mechanisms (i.e. density dependence and size dependence in survival and growth) linking recruitment variability to early life dynamics. The analysis was conducted on six economically and ecologically important fish populations from cold temperate and sub‐arctic marine ecosystems. Our results underscore the importance of size for survival early in life. The comparative analysis suggests that size‐dependent mortality and density‐dependent growth frequently occur at a transition from pelagic to demersal habitats, which may be linked to competition for suitable habitat. The generality of this hypothesis warrants testing in future research.publishedVersio

    Biomass of Scyphozoan Jellyfish, and Its Spatial Association with 0-Group Fish in the Barents Sea

    Get PDF
    An 0-group fish survey is conducted annually in the Barents Sea in order to estimate fish population abundance. Data on jellyfish by-catch have been recorded since 1980, although this dataset has never been analysed. In recent years, however, the ecological importance of jellyfish medusae has become widely recognized. In this paper the biomass of jellyfish (medusae) in 0–60 m depths is calculated for the period 1980–2010. During this period the climate changed from cold to warm, and changes in zooplankton and fish distribution and abundance were observed. This paper discusses the less well known ecosystem component; jellyfish medusae within the Phylum Cnidaria, and their spatial and temporal variation. The long term average was ca. 9×108 kg, with some years showing biomasses in excess of 5×109 kg. The biomasses were low during 1980s, increased during 1990s, and were highest in early 2000s with a subsequent decline. The bulk of the jellyfish were observed in the central parts of the Barents Sea, which is a core area for most 0-group fishes. Jellyfish were associated with haddock in the western area, with haddock and herring in the central and coastal area, and with capelin in the northern area of the Barents Sea. The jellyfish were present in the temperature interval 1°C<T<10°C, with peak densities at ca. 5.5°C, and the greatest proportion of the jellyfish occurring between 4.0–7.0°C. It seems that the ongoing warming trend may be favourable for Barents Sea jellyfish medusae; however their biomass has showed a recent moderate decline during years with record high temperatures in the Barents Sea. Jellyfish are undoubtedly an important component of the Barents Sea ecosystem, and the data presented here represent the best summary of jellyfish biomass and distribution yet published for the region

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
    corecore