6 research outputs found

    Vermicomposting: A Step towards Sustainability

    Get PDF
    Agricultural production depends on so many things. Proper nutrient management is one of them. It becomes a trend to apply excess amount of fertilizer for enhancing productivity without considering its effect on soil health. Vermicomposting is a process of scientifically decomposing agricultural, municipality, and industrial wastes into nutrient enriched compost by earthworms. Vermicompost not only balance underground soil environment and makes is a suitable habitat for soil micro biota but also improves above ground environment. Microbes are the fundamental element of ecosystem. Use of vermicompost increases growth and proliferation of microbes that amplify environment’s betterment. Vermicomposting is also affordable for resource poor small and marginal farmers. Therefore, vermicompost use is more economical than synthetic organic fertilizer. So, economic viability, environmental stability, and enhancing livelihood quality are the major causes for its worldwide adoption in food production

    Crop Diversification an Effective Strategy for Sustainable Agriculture Development

    Get PDF
    Sustainable agricultural practices involve a variety of approaches. The most important approached for sustainable agriculture development is crop diversification. It allowing the farmers to employ biological cycles to minimize inputs, conserve the resource base, maximize yields and also reduce the risk due to ecological and environmental factors. It serves as an important opportunity to augment income and employment generation for rural communities. Crop diversification promotes the interaction of beneficial soil bacteria, interrupts the disease cycle, and reduces the quantity of weeds. Crop diversification boosts land-use efficiency and crop output by improving the physical and chemical qualities of soil. Crop diversification shows a lot of scope to alleviating the problems such as resurgence of insects-pests and weeds, soil degradation, environmental pollution, soil salinity, decline farm profit and climate change. Crop diversification through crop intensification system enhanced the net returns, B:C ratio, and overall system productivity of a farm. In order to achieve the benefits of crop diversification farmers are shifting from low value low yielding crops to high value high yielding crops. Thus, crop diversification has the sound capacity for achieving the goal of nutritional security, income growth, food security, employment generation and sustainable agriculture development

    Nano Fertilizer on Sustainable Agriculture- A Review

    No full text
    With an increment of population day by day the agriculture sector is facing a big issue with the production and the economics of production as well. In this scenario adoption of more efficient tools which could mitigate the drawbacks and led the agriculture in a sustainable way is the need of the hour. The application of nanotechnology in agriculture and forestry will help the environment to retain its biodiversity [1]. Nano fertilizers are synthesized or modified form of traditional fertilizers, fertilizers bulk materials or extracted from different vegetative or reproductive parts of the plant by different chemical, physical, mechanical or biological methods with the help of nanotechnology used to improve soil fertility, productivity and quality of agricultural produces [2]. In this particular scenario adoption of labour saving and well advanced technologies is badly needed. This could be mitigated by a eco-friendly technology of Nano-science [3]. Nano fertilizers can control nutrient release and give the proper amount of nutrients to crops in the right proportions, boosting yield while maintaining environmental safety [4]. A report by Dwairi [5] proposed that urea-impregnated zeolite may be utilised as a slow-release fertiliser, releasing nitrogen slowly and steadily from Nano zeolite. Zinc is one of the commonly deficient micronutrient in soil [6]. Chlorophyll formation, fertilisation, pollen function, and auxin synthesis all need zinc-containing nanomaterials. Zn is one of the elements that defend plants from drought conditions. [7]. A research by Raliya and Tarafdar in 2013 [8] showed that zinc oxide, Nano Particles were shown to improve chlorophyll content, protein synthesis, rhizospheric microbial activity, acid phosphatase, alkaline phosphatase, and phytase activity in a cluster bean rhizosphere. Copper has characteristics of first transported to shoot and then re translocated into root [9]. An experiment on moong bean (Vigna radiata) and wheat revealed that nano copper could penetrate cell membrane and conglomerate thereafter. Moong bean was found to be more sensitive regarding the toxicity of nano copper than wheat [10], (Rico et al. 2011

    Management of soil cover and tillage regimes in upland rice-sweet corn systems for better system performance, energy use and carbon footprints

    No full text
    This study investigates the effects of tillage and mulching regimes on rice-sweet corn systems in the lower Gangetic plains, focusing on region-specific and crop-specific impacts on soil-crop-environmental parameters. The experiment consisted of three levels of tillage: conventional (CT), minimum (MT), and zero (ZT), and four levels of mulching: live, leaf litter, paddy straw, and no mulching. The results show that ZT tillage resulted in higher bulk density (BD) compared to other treatments, despite an increase in soil organic carbon (SOC). Live and leaf litter mulching led to slight reductions in BD in the upper soil layers. CT resulted in net depletion of SOC whereas ZT registered a positive sequestration rate of 1.19 Mg ha−1 yr−1. Live and leaf litter mulching increased SOC sequestration by 42.6% and 38.8% compared to paddy straw mulching, respectively. Initially, ZT resulted in a 10.3% reduction in system productivity compared to CT, while MT yields were comparable to CT. However, mulching regimes consistently improved production by 16.4%–25.2% as compared to no mulch. ZT and MT were found to be more affordable than CT, with cost savings of 18.2% and 6.8%, respectively. ZT had the highest B: C ratio, indicating better economic efficiency. Among the mulching treatments, live mulching was the most economical. Both ZT and MT saved input energy by approximately 22.9% and 13.5%, respectively compared to CT. Live mulching resulted in the highest net energy and energy output. Compared to CT, ZT reduced carbon footprint (CF) by 41.5 and 22.2% in rice and sweet corn, respectively. MT scored midway between ZT and CT in all parameters. CT exhibited several limitations, including high input energy requirements, high cost of cultivation, poor economic efficiency, negative environmental impacts, and loss of SOC. ZT initially experienced yield reduction and lower net returns in the early years. Therefore, MT was identified as the best alternative in the initial years before transitioning completely to ZT, as it provided comparable yields to CT with better overall benefits. Among the soil cover regimes, live mulching was found to be the most favorable option across all dimensions

    In-depth pharmacological and nutritional properties of bael (Aegle marmelos): A critical review

    No full text
    corecore