1,139 research outputs found

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Evidence for the Contribution of the Hemozoin Synthesis Pathway of the Murine Plasmodium yoelii to the Resistance to Artemisinin-Related Drugs

    Get PDF
    Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia

    Caseload midwifery as organisational change:the interplay between professional and organisational projects in Denmark

    Get PDF
    BACKGROUND: The large obstetric units typical of industrialised countries have come under criticism for fragmented and depersonalised care and heavy bureaucracy. Interest in midwife-led continuity models of care is growing, but knowledge about the accompanying processes of organisational change is scarce. This study focuses on midwives’ role in introducing and developing caseload midwifery. Sociological studies of midwifery and organisational studies of professional groups were used to capture the strong interests of midwives in caseload midwifery and their key role together with management in negotiating organisational change. METHODS: We studied three hospitals in Denmark as arenas for negotiating the introduction and development of caseload midwifery and the processes, interests and resources involved. A qualitative multi-case design was used and the selection of hospitals aimed at maximising variance. Ten individual and 14 group interviews were conducted in spring 2013. Staff were represented by caseload midwives, ward midwives, obstetricians and health visitors, management by chief midwives and their deputies. Participants were recruited to maximise the diversity of experience. The data analysis adopted a thematic approach, using within- and across-case analysis. RESULTS: The analysis revealed a highly interdependent interplay between organisational and professional projects in the change processes involved in the introduction and development of caseload midwifery. This was reflected in three ways: first, in the key role of negotiations in all phases; second, in midwives’ and management’s engagement in both types of projects (as evident from their interests and resources); and third in a high capacity for resolving tensions between the two projects. The ward midwives’ role as a third party in organisational change further complicated the process. CONCLUSIONS: For managers tasked with the introduction and development of caseload midwifery, our study underscores the importance of understanding the complexity of the underlying change processes and of activating midwives’ and managers’ interests and resources in addressing the challenges. Further studies of female-dominated professions such as midwifery should offer good opportunities for detailed analysis of the deep-seated interdependence of professional and organisational projects and for identifying the key dimensions of this interdependence

    Planck intermediate results. XLI. A map of lensing-induced B-modes

    Get PDF
    The secondary cosmic microwave background (CMB) BB-modes stem from the post-decoupling distortion of the polarization EE-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced BB-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB BB-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization EE-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced BB-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) BB-mode map can be used to measure the lensing BB-mode power spectrum at multipoles up to 20002000. In particular, when cross-correlating with the BB-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced BB-mode power spectrum measurement at a significance level of 12 σ12\,\sigma, which agrees with the theoretical expectation derived from the Planck best-fit Λ\LambdaCDM model. This unique nearly all-sky secondary BB-mode template, which includes the lensing-induced information from intermediate to small (10â‰Čℓâ‰Č100010\lesssim \ell\lesssim 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial BB-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB BB-modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma

    Factors contributing to attrition behavior in diabetes self-management programs: A mixed method approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes self-management education is a critical component in diabetes care. Despite worldwide efforts to develop efficacious DSME programs, high attrition rates are often reported in clinical practice. The objective of this study was to examine factors that may contribute to attrition behavior in diabetes self-management programs.</p> <p>Methods</p> <p>We conducted telephone interviews with individuals who had Type 2 diabetes (n = 267) and attended a diabetes education centre. Multivariable logistic regression was performed to identify factors associated with attrition behavior. Forty-four percent of participants (n = 118) withdrew prematurely from the program and were asked an open-ended question regarding their discontinuation of services. We used content analysis to code and generate themes, which were then organized under the Behavioral Model of Health Service Utilization.</p> <p>Results</p> <p>Working full and part-time, being over 65 years of age, having a regular primary care physician or fewer diabetes symptoms were contributing factors to attrition behaviour in our multivariable logistic regression. The most common reasons given by participants for attrition from the program were conflict between their work schedules and the centre's hours of operation, patients' confidence in their own knowledge and ability when managing their diabetes, apathy towards diabetes education, distance to the centre, forgetfulness, regular physician consultation, low perceived seriousness of diabetes, and lack of familiarity with the centre and its services. There was considerable overlap between our quantitative and qualitative results.</p> <p>Conclusion</p> <p>Reducing attrition behaviour requires a range of strategies targeted towards delivering convenient and accessible services, familiarizing individuals with these services, increasing communication between centres and their patients, and creating better partnerships between centres and primary care physicians.</p

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore