129 research outputs found

    Lattice width directions and Minkowski's 3^d-theorem

    Full text link
    We show that the number of lattice directions in which a d-dimensional convex body in R^d has minimum width is at most 3^d-1, with equality only for the regular cross-polytope. This is deduced from a sharpened version of the 3^d-theorem due to Hermann Minkowski (22 June 1864--12 January 1909), for which we provide two independent proofs.Comment: 1 figure, 10 page

    Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour

    Get PDF
    The five-subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin

    Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres.

    Get PDF
    Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs

    Clinical risk scores for predicting stroke-associated pneumonia: A systematic review:A systematic review

    Get PDF
    Purpose Several risk stratification scores for predicting stroke-associated pneumonia have been derived. We aimed to evaluate the performance and clinical usefulness of such scores for predicting stroke-associated pneumonia. Method A systematic literature review was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, with application of the Quality Assessment of Diagnostic Accuracy-2 tool. Published studies of hospitalised adults with ischaemic stroke, intracerebral haemorrhage, or both, which derived and validated an integer-based clinical risk score, or externally validated an existing score to predict occurrence of stroke-associated pneumonia, were considered and independently screened for inclusion by two reviewers. Findings We identified nine scores, from eight derivation cohorts. Age was a component of all scores, and the NIHSS score in all except one. Six scores were internally validated and five scores were externally validated. The A2DS2 score (Age, Atrial fibrillation, Dysphagia, Severity [NIHSS], Sex) was the most externally validated in 8 independent cohorts. Performance measures were reported for eight scores. Discrimination tended to be more variable in the external validation cohorts (C statistic 0.67–0.83) than the derivation cohorts (C statistic 0.74–0.85). Discussion Overall, discrimination and calibration were similar between the different scores. No study evaluated influence on clinical decision making or prognosis. Conclusion The clinical prediction scores varied in their simplicity of use and were comparable in performance. Utility of such scores for preventive intervention trials and in clinical practice remains uncertain and requires further study

    Coordination by Cdc42 of actin, contractility, and adhesion for melanoblast movement in mouse skin

    Get PDF
    YesThe individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods with dynamic actin bursts. Despite assuming an elongated shape usually associated with fast mesenchymal motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in the epidermis, with nearly static pseudopods. Although much of the basic actin machinery was intact, Cdc42 null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics.Cancer Research UK (to L.M.M. [A17196], R.H.I. [A19257], and S.W.G.T.) and NIH grants P01-GM103723 and P41-EB002025 (to K.M.H.). N.R.P. is supported by a Pancreatic Cancer Research Fund grant (to L.M.M.). Funding to Prof. Rottner by the Deutsche Forschungsgemeinschaft (grant RO2414/3-2)

    Lipid hydroperoxides and oxylipins are mediators of denervation induced muscle atrophy

    Get PDF
    Loss of innervation is a key driver of age associated muscle atrophy and weakness (sarcopenia). Our laboratory has previously shown that denervation induced atrophy is associated with the generation of mitochondrial hydroperoxides and lipid mediators produced downstream of cPLA2 and 12/15 lipoxygenase (12/15-LOX). To define the pathological impact of lipid hydroperoxides generated in denervation-induced atrophy in vivo, we treated mice with liproxstatin-1, a lipid hydroperoxide scavenger. We treated adult male mice with 5mg/kg liproxstain-1 or vehicle one day prior to sciatic nerve transection and daily for 7 days post-denervation before tissue analysis. Liproxstatin-1 treatment protected gastrocnemius mass and fiber cross sectional area (∼40% less atrophy post-denervation in treated versus untreated mice). Mitochondrial hydroperoxide generation was reduced 80% in vitro and by over 65% in vivo by liproxstatin-1 treatment in denervated permeabilized muscle fibers and decreased the content of 4-HNE by ∼25% post-denervation. Lipidomic analysis revealed detectable levels of 25 oxylipins in denervated gastrocnemius muscle and significantly increased levels for eight oxylipins that are generated by metabolism of fatty acids through 12/15-LOX. Liproxstatin-1 treatment reduced the level of three of the eight denervation-induced oxylipins, specifically 15-HEPE, 13-HOTrE and 17-HDOHE. Denervation elevated protein degradation rates in muscle and treatment with liproxstatin-1 reduced rates of protein breakdown in denervated muscle. In contrast, protein synthesis rates were unchanged by denervation. Targeted proteomics revealed a number of proteins with altered expression after denervation but no effect of liproxstain-1. Transcriptomic analysis revealed 203 differentially expressed genes in denervated muscle from vehicle or liproxstatin-1 treated mice, including ER stress, nitric oxide signaling, Gαi signaling, glucocorticoid receptor signaling, and other pathways. Overall, these data suggest lipid hydroperoxides and oxylipins are key drivers of increased protein breakdown and muscle loss associated with denervation induced atrophy and a potential target for sarcopenia intervention

    A systematic review of the effect of therapists’ internalised models of relationships on the quality of the therapeutic relationship

    Get PDF
    The quality of the therapeutic relationship has been identified as a key factor in predicting client outcomes, accounting for around 8% of variation (Horvath, Del Re, Flückiger, & Symonds, 2011; Martin, Garske, & Davis, 2000; Wampold, 2001). Although therapist factors have been seen as less relevant to therapeutic relationship quality than client factors, focus on therapist factors has steadily increased in line with the view that the therapist responds differently to different clients, due to their own personal characteristics and unconscious processes. Relational theory suggests that the therapist’s particular qualities combine with the client’s particular qualities to form a unique interpersonal context (e.g. Wachtel, 2008). Safran and Muran (2000) suggest that the interpersonal context is heavily influenced by client and therapist internalised patterns of relating formed in early childhood. Evidence shows that certain therapist factors do affect therapeutic relationship quality; the qualities of dependability, warmth and responsiveness in therapists have all been found to create stronger alliances (Ackerman & Hilsenroth, 2003). The importance of these mostly interpersonal characteristics imply that the internalised relational models of therapists may also be important in determining the type of relationship that is built and the therapeutic processes occurring within

    Mosaic fungal individuals have the potential to evolve within a single generation

    Get PDF
    Although cells of mushroom-producing fungi typically contain paired haploid nuclei (n + n), most Armillaria gallica vegetative cells are uninucleate. As vegetative nuclei are produced by fusions of paired haploid nuclei, they are thought to be diploid (2n). Here we report finding haploid vegetative nuclei in A. gallica at multiple sites in southeastern Massachusetts, USA. Sequencing multiple clones of a single-copy gene isolated from single hyphal filaments revealed nuclear heterogeneity both among and within hyphae. Cytoplasmic bridges connected hyphae in field-collected and cultured samples, and we propose nuclear migration through bridges maintains this nuclear heterogeneity. Growth studies demonstrate among- and within-hypha phenotypic variation for growth in response to gallic acid, a plant-produced antifungal compound. The existence of both genetic and phenotypic variation within vegetative hyphae suggests that fungal individuals have the potential to evolve within a single generation in response to environmental variation over time and space

    Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-β-Lactamases

    Get PDF
    The bicyclic boronate VNRX-5133 (taniborbactam) is a new type of β-lactamase inhibitor in clinical development. We report that VNRX-5133 inhibits serine-β-lactamases (SBLs) and some clinically important metallo-β-lactamases (MBLs), including NDM-1 and VIM-1/2. VNRX-5133 activity against IMP-1 and tested B2/B3 MBLs was lower/not observed. Crystallography reveals how VNRX-5133 binds to the class D SBL OXA-10 and MBL NDM-1. The crystallographic results highlight the ability of bicyclic boronates to inhibit SBLs and MBLs via binding of a tetrahedral (sp3) boron species. The structures imply conserved binding of the bicyclic core with SBLs/MBLs. With NDM-1, by crystallography, we observed an unanticipated VNRX-5133 binding mode involving cyclization of its acylamino oxygen onto the boron of the bicyclic core. Different side-chain binding modes for bicyclic boronates for SBLs and MBLs imply scope for side-chain optimization. The results further support the "high-energy-intermediate" analogue approach for broad-spectrum β-lactamase inhibitor development and highlight the ability of boron inhibitors to interchange between different hybridization states/binding modes
    • …
    corecore