257 research outputs found

    Variation in the predictability of lake plankton metric types

    Get PDF
    Statistical and climate models are frequently used for biodiversity projections under future climatic changes, but their predictive capacity for freshwater plankton may vary among different species and community metrics. Here, we used random forests to model plankton species and community metrics as a function of biological, climatic, physical, and chemical data from long-term (2000–2017) monitoring data collected from Lake Müggelsee Berlin, Germany. We (1) compared the predictability of well-known lake plankton metric types (biomass, abundance, taxonomic diversity, Shannon diversity, Simpson diversity, evenness, taxonomic distinctness, and taxonomic richness) and (2) assessed how the relative influence of different environmental drivers varies across lake plankton metric models. Overall, the metric predictability was highest for biomass and abundance followed by taxonomic richness. The biomass of dominant phytoplankton taxonomic groups such as cyanobacteria (adjusted-R2 = 0.53) and the abundance of dominant zooplankton taxonomic groups such as rotifers (adjusted-R2 = 0.59) and daphnids (adjusted-R2 = 0.51) were more predictable than other metric types. The plankton metric predictability increased when grouping phytoplankton species according to their functional traits (adjusted-R2 = 0.37 ± 0.14, mean ± SD, n = 36 functional groups) compared to higher taxonomic units (adjusted-R2 = 0.25 ± 0.15, n = 22 taxonomic groups). Light, nutrients, water temperature, and seasonality for phytoplankton and food resources for zooplankton were the main drivers of both taxonomic and functional groups, giving confidence that our models captured the expected major environmental drivers. Our quantitative analyses highlight the multidimensionality of lake planktonic responses to environmental drivers and have implications for our capacity to select appropriate metrics for forecasting the future of lake ecosystems under global change scenarios

    Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms

    Get PDF
    Extreme wind storms can strongly influence short-term variation in lake ecosystem functioning. Climate change is affecting storms by altering their frequency, duration, and intensity, which may have consequences for lake ecosystem resistance and resilience. However, catchment and lake processes are simultaneously affecting antecedent lake conditions which may shape the resistance and resilience landscape prior to storm exposure. To determine whether storm characteristics or antecedent lake conditions are more important for explaining variation in lake ecosystem resistance and resilience, we analyzed the effects of 25 extreme wind storms on various biological and physiochemical variables in a shallow lake. Using boosted regression trees to model observed variation in resistance and resilience, we found that antecedent lake conditions were more important (relative importance = 67%) than storm characteristics (relative importance = 33%) in explaining variation in lake ecosystem resistance and resilience. The most important antecedent lake conditions were turbidity, Schmidt stability, %O2 saturation, light conditions, and soluble reactive silica concentrations. We found that storm characteristics were all similar in their relative importance and results suggest that resistance and resilience decrease with increasing duration, mean precipitation, shear stress intensity, and time between storms. In addition, we found that antagonistic or opposing effects between the biological and physiochemical variables influence the overall resistance and resilience of the lake ecosystem under specific lake and storm conditions. The extent to which these results apply to the resistance and resilience of different lake ecosystems remains an important area for inquiry

    Galactic bulge giants: probing stellar and galactic evolution I. Catalogue of Spitzer IRAC and MIPS sources

    Full text link
    Aims: We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods: To this end, we observed seven 15 times 15 arcmin^2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results: In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.Comment: 21 pages, accepted for publication in A&A. A version with high-resolution figures, as well as the data catalogues (including cross-id with GLIMPSE and GALCEN) and image mosaics are available at the anonymous ftp://ftp.ster.kuleuven.be/dist/stefan/Spitzer

    Lake surface water temperature and oxygen saturation resistance and resilience following extreme storms: chlorophyll a shapes resistance to storms

    Get PDF
    Extreme storms are becoming more frequent and intense with climate change. Assessing lake ecosystem responses to extreme storms (resistance) and their capacity to recover (resilience) is critical for predicting the future of lake ecosystems in a stormier world. Here we provide a systematic, standardized, and quantitative approach for identifying critical processes shaping lake ecosystem resistance following extreme storms. We identified 576 extreme wind storms for 8 lakes in Europe and North America. We calculated the resistance and resilience of each lake’s surface water temperature and oxygen saturation following each storm. Sharp decreases and increases in epilimnetic temperature and oxygen saturation caused by extreme storms resulted in unpredictable changes in lake resilience values across lakes, with a tendency not to return to pre-storm conditions. Resistance was primarily shaped by mean annual chlorophyll a concentration and its overall relationship with other physiochemical lake and storm characteristics. We modeled variation in resistance as a function of both lake and storm conditions, and the results suggested that eutrophic lakes were consistently less resistant to extreme storms compared to oligotrophic lakes. The lakes tended to be most resistant to extreme storms when antecedent surface waters were warm and oxygen saturated, but overall resistance was highest in lakes with low mean annual concentrations of chlorophyll a and total phosphorus. Our findings suggest physiochemical responses of lakes to meteorological forcing are shaped by ecological and/or physical feedback and processes that determine trophic state, such as the influence of differences in nutrient availability and algal growth

    Cold War spy satellite images reveal long-term declines of a philopatric keystone species in response to cropland expansion

    Get PDF
    Agricultural expansion drives biodiversity loss globally, but impact assessments are biased towards recent time periods. This can lead to a gross underestimation of species declines in response to habitat loss, especially when species declines are gradual and occur over long time periods. Using Cold War spy satellite images (Corona), we show that a grassland keystone species, the bobak marmot (Marmota bobak), continues to respond to agricultural expansion that happened more than 50 years ago. Although burrow densities of the bobak marmot today are highest in croplands, densities declined most strongly in areas that were persistently used as croplands since the 1960s. This response to historical agricultural conversion spans roughly eight marmot generations and suggests the longest recorded response of a mammal species to agricultural expansion. We also found evidence for remarkable philopatry: nearly half of all burrows retained their exact location since the 1960s, and this was most pronounced in grasslands. Our results stress the need for farsighted decisions, because contemporary land management will affect biodiversity decades into the future. Finally, our work pioneers the use of Corona historical Cold War spy satellite imagery for ecology. This vastly underused global remote sensing resource provides a unique opportunity to expand the time horizon of broad-scale ecological studies

    The RMS Survey: Mid-Infrared Observations of Candidate Massive YSOs in the Southern Hemisphere

    Full text link
    Abridged abstract: The Red MSX Source (RMS) survey is an ongoing effort to return a large, well-selected sample of massive young stellar objects (MYSOs) within our Galaxy. A series of ground-based follow-up observations are being undertaken in order to remove contaminant objects from our list of 2000 candidates, and to begin characterising these MYSOs. As a part of these follow-up observations, high resolution (~1") mid-IR imaging aids the identification of contaminant objects which are resolved (UCHII regions, PN) as opposed to those which are unresolved (YSOs, evolved stars) as well as identifying YSOs near UCHII regions and other multiple sources. We present 10.4 micron imaging observations for 346 candidate MYSOs in the RMS survey in the Southern Hemisphere, primarily outside the region covered by the GLIMPSE Spitzer Legacy Survey. These were obtained using TIMMI2 on the ESO 3.6m telescope in La Silla, Chile. Our photometric accuracy is of order 0.05Jy, and our astrometric accuracy is 0.8", which is an improvement over the nominal 2" accuracy of the MSX PSC.Comment: 9 page paper accepted to A&A. Online data for table 2 and figure 1 will be available in the published online version of this paper via A&A. The paper contains 7 figures and 3 table

    Centre selection for clinical trials and the generalisability of results: a mixed methods study.

    Get PDF
    BACKGROUND: The rationale for centre selection in randomised controlled trials (RCTs) is often unclear but may have important implications for the generalisability of trial results. The aims of this study were to evaluate the factors which currently influence centre selection in RCTs and consider how generalisability considerations inform current and optimal practice. METHODS AND FINDINGS: Mixed methods approach consisting of a systematic review and meta-summary of centre selection criteria reported in RCT protocols funded by the UK National Institute of Health Research (NIHR) initiated between January 2005-January 2012; and an online survey on the topic of current and optimal centre selection, distributed to professionals in the 48 UK Clinical Trials Units and 10 NIHR Research Design Services. The survey design was informed by the systematic review and by two focus groups conducted with trialists at the Birmingham Centre for Clinical Trials. 129 trial protocols were included in the systematic review, with a total target sample size in excess of 317,000 participants. The meta-summary identified 53 unique centre selection criteria. 78 protocols (60%) provided at least one criterion for centre selection, but only 31 (24%) protocols explicitly acknowledged generalisability. This is consistent with the survey findings (n = 70), where less than a third of participants reported generalisability as a key driver of centre selection in current practice. This contrasts with trialists' views on optimal practice, where generalisability in terms of clinical practice, population characteristics and economic results were prime considerations for 60% (n = 42), 57% (n = 40) and 46% (n = 32) of respondents, respectively. CONCLUSIONS: Centres are rarely enrolled in RCTs with an explicit view to external validity, although trialists acknowledge that incorporating generalisability in centre selection should ideally be more prominent. There is a need to operationalize 'generalisability' and incorporate it at the design stage of RCTs so that results are readily transferable to 'real world' practice

    Spatial scales of COVID-19 transmission in Mexico

    Get PDF
    During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general
    • …
    corecore