610 research outputs found

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Measurement of the mass and lifetime of the Ωb−\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb−1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 Ωb−→Ωc0π−\Omega_b^-\to\Omega_c^0\pi^-, Ωc0→pK−K−π+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the Ξb−→Ξc0π−\Xi_b^-\to\Xi_c^0\pi^-, Ξc0→pK−K−π+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb−\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb−\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩb−−mΞb−m_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb−\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Constraints on the unitarity triangle angle Îł\gamma from Dalitz plot analysis of B0→DK+π−B^0 \to D K^+ \pi^- decays

    Get PDF
    The first study is presented of CP violation with an amplitude analysis of the Dalitz plot of B0→DK+π−B^0 \to D K^+ \pi^- decays, with D→K+π−D \to K^+ \pi^-, K+K−K^+ K^- and π+π−\pi^+ \pi^-. The analysis is based on a data sample corresponding to 3.0 fb−13.0\,{\rm fb}^{-1} of pppp collisions collected with the LHCb detector. No significant CP violation effect is seen, and constraints are placed on the angle Îł\gamma of the unitarity triangle formed from elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated with the B0→DK∗(892)0B^0 \to D K^*(892)^0 decay are determined for the first time. These measurements can be used to improve the sensitivity to Îł\gamma of existing and future studies of the B0→DK∗(892)0B^0 \to D K^*(892)^0 decay.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html; updated to correct figure 9 (numerical results unchanged

    A new algorithm for identifying the flavour of Bs0B_s^0 mesons at LHCb

    Get PDF
    A new algorithm for the determination of the initial flavour of Bs0B_s^0 mesons is presented. The algorithm is based on two neural networks and exploits the bb hadron production mechanism at a hadron collider. The first network is trained to select charged kaons produced in association with the Bs0B_s^0 meson. The second network combines the kaon charges to assign the Bs0B_s^0 flavour and estimates the probability of a wrong assignment. The algorithm is calibrated using data corresponding to an integrated luminosity of 3 fb−1^{-1} collected by the LHCb experiment in proton-proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in two ways: by resolving the Bs0B_s^0-Bˉs0\bar{B}_s^0 flavour oscillations in Bs0→Ds−π+B_s^0 \to D_s^- \pi^+ decays, and by analysing flavour-specific Bs2∗(5840)0→B+K−B_{s 2}^{*}(5840)^0 \to B^+ K^- decays. The tagging power measured in Bs0→Ds−π+B_s^0 \to D_s^- \pi^+ decays is found to be (1.80±0.19(stat)±0.18(syst))(1.80 \pm 0.19({\rm stat}) \pm 0.18({\rm syst}))\%, which is an improvement of about 50\% compared to a similar algorithm previously used in the LHCb experiment.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-056.htm

    Observation of the Bs0→J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay

    Get PDF
    The Bs0→J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay is observed in pppp collision data corresponding to an integrated luminosity of 3 fb−1^{-1} recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, with a statistical significance of 15 standard deviations. The mass of the Bs0B_s^0 meson is measured to be 5367.08 ± 0.38 ± 0.155367.08\,\pm \,0.38\,\pm\, 0.15 MeV/c2^2. The branching fraction ratio B(Bs0→J/ψϕϕ)/B(Bs0→J/ψϕ)\mathcal{B}(B_s^0 \rightarrow J/\psi \phi \phi)/\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) is measured to be 0.0115\,\pm\, 0.0012\, ^{+0.0005}_{-0.0009}. In both cases, the first uncertainty is statistical and the second is systematic. No evidence for non-resonant Bs0→J/ψϕK+K−B_s^0 \rightarrow J/\psi \phi K^+ K^- or Bs0→J/ψK+K−K+K−B_s^0 \rightarrow J/\psi K^+ K^- K^+ K^- decays is found.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+→J/ψ K+B^+ \to J/\psi \, K^+ and B0→J/ψ K∗0B^0 \to J/\psi \, K^{*0} using 3.0 fb−13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7 TeV7\mathrm{\,TeV} and 8 TeV8\mathrm{\,TeV}. Its tagging power on these samples of B→J/ψ XB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    First observation and amplitude analysis of the B−→D+K−π−B^{-}\to D^{+}K^{-}\pi^{-} decay

    Get PDF
    The B−→D+K−π−B^{-}\to D^{+}K^{-}\pi^{-} decay is observed in a data sample corresponding to 3.0 fb−13.0~\rm{fb}^{-1} of pppp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B−→D+K−π−)=(7.31±0.19±0.22±0.39)×10−5{\cal B}(B^{-}\to D^{+}K^{-}\pi^{-}) = (7.31 \pm 0.19 \pm 0.22 \pm 0.39) \times 10^{-5} where the uncertainties are statistical, systematic and from the branching fraction of the normalisation channel B−→D+π−π−B^{-}\to D^{+}\pi^{-}\pi^{-}, respectively. An amplitude analysis of the resonant structure of the B−→D+K−π−B^{-}\to D^{+}K^{-}\pi^{-} decay is used to measure the contributions from quasi-two-body B−→D0∗(2400)0K−B^{-}\to D_{0}^{*}(2400)^{0}K^{-}, B−→D2∗(2460)0K−B^{-}\to D_{2}^{*}(2460)^{0}K^{-}, and B−→DJ∗(2760)0K−B^{-}\to D_{J}^{*}(2760)^{0}K^{-} decays, as well as from nonresonant sources. The DJ∗(2760)0D_{J}^{*}(2760)^{0} resonance is determined to have spin~1.Comment: 39 pages, 10 figures, submitted to Phys. Rev. D. Updated following erratum 10.1103/PhysRevD.93.11990

    Study of B−→DK−π+π−B^{-}\to DK^-\pi^+\pi^- and B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle Îł\gamma

    Get PDF
    We report a study of the suppressed B−→DK−π+π−B^-\to DK^-\pi^+\pi^- and favored B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the K∓π±K^{\mp}\pi^{\pm} and CP-even K+K−K^+K^- and π+π−\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb−1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed B−→DK−π+π−B^-\to DK^-\pi^+\pi^- and favored B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed D→K+π−D\to K^+\pi^- final state of the B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay B−→DK−π+π−B^{-}\to DK^-\pi^+\pi^-, with D→K+π−D\to K^+\pi^-, is also presented. From the observed yields in the B−→DK−π+π−B^-\to DK^-\pi^+\pi^-, B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be Îł=(74−19+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of Îł\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm

    Observation of J/ψpJ/\psi p resonances consistent with pentaquark states in Λb0→J/ψK−p{\Lambda_b^0\to J/\psi K^-p} decays

    Get PDF
    Observations of exotic structures in the J/ψpJ/\psi p channel, that we refer to as pentaquark-charmonium states, in Λb0→J/ψK−p\Lambda_b^0\to J/\psi K^- p decays are presented. The data sample corresponds to an integrated luminosity of 3/fb acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/ψpJ/\psi p mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±294380\pm 8\pm 29 MeV and a width of 205±18±86205\pm 18\pm 86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.54449.8\pm 1.7\pm 2.5 MeV and a width of 39±5±1939\pm 5\pm 19 MeV. The preferred JPJ^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after referee's comments, now 19 figure

    Observation of the Bs0→ηâ€Čηâ€ČB^0_s\to\eta'\eta' decay

    Get PDF
    The first observation of the Bs0→ηâ€Čηâ€ČB^0_s\to\eta'\eta' decay is reported. The study is based on a sample of proton-proton collisions corresponding to 3.03.0 fb−1{\rm fb^{-1}} of integrated luminosity collected with the LHCb detector. The significance of the signal is 6.46.4 standard deviations. The branching fraction is measured to be [3.31±0.64 (stat)±0.28 (syst)±0.12 (norm)]×10−5[3.31 \pm 0.64\,{\rm (stat)} \pm 0.28\,{\rm (syst)} \pm 0.12\,{\rm (norm)}]\times10^{-5}, where the third uncertainty comes from the B±→ηâ€ČK±B^{\pm}\to\eta' K^{\pm} branching fraction that is used as a normalisation. In addition, the charge asymmetries of B±→ηâ€ČK±B^{\pm}\to\eta' K^{\pm} and B±→ϕK±B^{\pm}\to\phi K^{\pm}, which are control channels, are measured to be (−0.2±1.3)%(-0.2 \pm1.3)\% and (+1.7±1.3)%(+1.7\pm1.3)\%, respectively. All results are consistent with theoretical expectations
    • 

    corecore