111 research outputs found

    Matter in inhomogeneous loop quantum cosmology: the Gowdy T(3) model

    No full text
    We apply a hybrid approach which combines loop and Fock quantizations to fully quantize the linearly polarized Gowdy T3T^3 model in the presence of a massless scalar field with the same symmetries as the metric. Like in the absence of matter content, the application of loop techniques leads to a quantum resolution of the classical cosmological singularity. Most importantly, thanks to the inclusion of matter, the homogeneous sector of the model contains flat Friedmann-Robertson-Walker (FRW) solutions, which are not allowed in vacuo. Therefore, this model provides a simple setting to study at the quantum level interesting physical phenomena such as the effect of the anisotropies and inhomogeneities on flat FRW cosmologies

    Design and operation of a rainfall simulator for field studies of runoff and soil erosion

    Get PDF
    [Abstract] The present paper describes the design, construction, calibration and operation of a spray rainfall simulator . The design of the plots used for the purpose of this study is also described in order to determine hydrological and erosion parameters. Selected rainfall intensity of 64 mm h- 1 are representative of heavy storm conditions in Galicia. Drop size distribution results in these conditions , a D5 0of 1.2 mm, were similar to those calculated for natural rainfall by BUBENZER (1979). Fall velocities reached were between 75 and 100% terminal velocity, depending on drop diameter and 13.05 Jm- 2m m- 1kinetic energy was obtained Surface area of the plots used was 1 m2, surronded by a metal structure connected to a V-shaped system to collect the surface runoff and sediment produced in the different experiments

    Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models

    Get PDF
    Species distribution models (SDMs) are widely used in ecology, biogeography and conservation biology to estimate relationships between environmental variables and species occurrence data and make predictions of how their distributions vary in space and time. During the past two decades, the field has increasingly made use of machine learning approaches for constructing and validating SDMs. Model accuracy has steadily increased as a result, but the interpretability of the fitted models, for example the relative importance of predictor variables or their causal effects on focal species, has not always kept pace. Here we draw attention to an emerging subdiscipline of artificial intelligence, explainable AI (xAI), as a toolbox for better interpreting SDMs. xAI aims at deciphering the behavior of complex statistical or machine learning models (e.g. neural networks, random forests, boosted regression trees), and can produce more transparent and understandable SDM predictions. We describe the rationale behind xAI and provide a list of tools that can be used to help ecological modelers better understand complex model behavior at different scales. As an example, we perform a reproducible SDM analysis in R on the African elephant and showcase some xAI tools such as local interpretable model-agnostic explanation (LIME) to help interpret local-scale behavior of the model. We conclude with what we see as the benefits and caveats of these techniques and advocate for their use to improve the interpretability of machine learning SDMs.Peer reviewe

    Ecological Diversity within Rear-Edge: A Case Study from Mediterranean Quercus pyrenaica Willd

    Get PDF
    Understanding the ecology of populations located in the rear edge of their distribution is key to assessing the response of the species to changing environmental conditions. Here, we focus on rear-edge populations of Quercus pyrenaica in Sierra Nevada (southern Iberian Peninsula) to analyze their ecological and floristic diversity. We perform multivariate analyses using high-resolution environmental information and forest inventories to determine how environmental variables differ among oak populations, and to identify population groups based on environmental and floristic composition. We find that water availability is a key variable in explaining the distribution of Q. pyrenaica and the floristic diversity of their accompanying communities within its rear edge. Three cluster of oak populations were identified based on environmental variables. We found differences among these clusters regarding plant diversity, but not for forest attributes. A remarkable match between the populations clustering derived from analysis of environmental variables and the ordination of the populations according to species composition was found. The diversity of ecological behaviors for Q. pyrenaica populations in this rear edge are consistent with the high genetic diversity shown by populations of this oak in the Sierra Nevada. The identification of differences between oak populations within the rear-edge with respect to environmental variables can aid with planning the forest management and restoration actions, particularly considering the importance of some environmental factors in key ecological aspects.LIFE-ADAPTAMED: Protection of key ecosystem services by adaptive management of Climate Change endangered Mediterranean socioecosystems LIFE14 CCA/ES/000612H2020 project European Long-Term Ecosystem and socio-ecological Research Infrastructure (eLTER)European Research Council (ERC) 64703

    Density-dependence of reproductive success in a Houbara bustard population

    Get PDF
    Although density-dependent processes and their impacts on population dynamics are key issues in ecology and conservation biology, empirical evidence of density-dependence remains scarce for species or populations with low densities, scattered distributions, and especially for managed populations where densities may vary as a result of extrinsic factors (such as harvesting or releases). Here, we explore the presence of density-dependent processes in a reinforced population of North African Houbara bustard (Chlamydotis undulata undulata). We investigated the relationship between reproductive success and local density, and the possible variation of this relationship according to habitat suitability using three independent datasets. Based on eight years of nests monitoring (more than 7000 nests), we modeled the Daily Nest Survival Rate (DNSR) as a proxy of reproductive success. Our results indicate that DNSR was negatively impacted by local densities and that this relationship was approximately constant in space and time: (1) although DNSR strongly decreased over the breeding season, the negative relationship between DNSR and density remained constant over the breeding season; (2) this density-dependent relationship did not vary with the quality of the habitat associated with the nest location. Previous studies have shown that the demographic parameters and population dynamics of the reinforced North African Houbara bustard are strongly influenced by extrinsic environmental and management parameters. Our study further indicates the existence of density-dependent regulation in a low-density, managed population.The study was funded by Emirates Center for Wildlife Propagation (ECWP, Morocco), a project of the International Fund for Houbara Conservation (IFHC, United Arab Emirates)

    On the Inadequacy of Species Distribution Models for Modelling the Spread of SARS-CoV-2: Response to Araújo and Naimi

    Get PDF
    The ongoing pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing significant damage to public health and economic livelihoods, and is putting significant strains on healthcare services globally. This unfolding emergency has prompted the preparation and dissemination of the article “Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate” by Araújo and Naimi (2020). The authors present the results of an ensemble forecast made from a suite of species distribution models (SDMs), where they attempt to predict the suitability of the climate for the spread of SARS-CoV-2 over the coming months. They argue that climate is likely to be a primary regulator for the spread of the infection and that people in warm-temperate and cold climates are more vulnerable than those in tropical and arid climates. A central finding of their study is that the possibility of a synchronous global pandemic of SARS-CoV-2 is unlikely. Whilst we understand that the motivations behind producing such work are grounded in trying to be helpful, we demonstrate here that there are clear conceptual and methodological deficiencies with their study that render their results and conclusions invalid. What follows is a response to the Araújo and Naimi article centered around three main criticisms: 1) Given the fact that SARS-CoV-2 has a primary infection pathway of direct contact, it is in an active spreading phase, and remains largely underreported in the Global South, it represents an inappropriate system for analysis using the SDM framework. 2) Even if we were to accept that an SDM framework would be applicable here, the methodology presented in the article strays far from best-practice guidelines for the application of SDMs. 3) The dissemination strategy of the authors failed to respect the frameworks of risks adhered to in other academic disciplines pertaining to public health, resulting in erroneous but well-publicised claims with broad policy implications before any scientific oversight could be applied

    Documenting models and workflows: the next challenge in the field of ecological data management

    Get PDF
    Los modelos ecológicos se han convertido en una pieza clave de esta ciencia. La generación de conocimiento se consigue en buena medida mediante procesos analíticos más o menos complejos aplicados sobre conjuntos de datos diversos. Pero buena parte del conocimiento necesario para diseñar e implementar esos modelos no está accesible a la comunidad científica. Proponemos la creación de herramientas informáticas para documentar, almacenar y ejecutar modelos ecológicos y flujos de trabajo. Estas herramientas (repositorios de modelos) están siendo desarrolladas por otras disciplinas como la biología molecular o las ciencias de la Tierra. Presentamos un repositorio de modelos (ModeleR) desarrollado en el contexto del Observatorio de seguimiento del cambio global de Sierra Nevada (Granada-Almería). Creemos que los repositorios de modelos fomentarán la cooperación entre científicos, mejorando la creación de conocimiento relevante que podría ser transferido a los tomadores de decisiones.Ecological models have become a key part of this scientific discipline. Most of the knowledge created by ecologists is obtained by applying analytical processes to primary data. But most of the information underlying how to create models or use analytic techniques already published in the scientific literature is not readily available to scientists. We are proposing the creation of computer tools that help to document, store and execute ecological models and scientific workflows. These tools (called model repositories) are being developed by other disciplines such as molecular biology and earth science. We are presenting a model repository (called ModeleR) that has been developed in the context of the Sierra Nevada Global Change Observatory (Granada-Almería. Spain). We believe that model repositories will foster cooperation among scientists, enhancing the creation of relevant knowledge that could be transferred to environmental managers.El desarrollo de ModeleR ha sido financiado por la Consejería de Medio Ambiente y Ordenación del Territorio de la Junta de Andalucía a través de la Red de Información Ambiental (REDIAM), gracias a un convenio llamado “Diseño y creación de un repositorio de modelos para la red de información ambiental de Andalucía”. A.J. Pérez-Luque agradece al MICINN por el contrato PTA 2011-6322-I

    Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia

    Get PDF
    Fire is the most frequent disturbance in the Ericaceous Belt (ca 3000–4300 m.a.s.l.), one of the most important plant communities of tropical African mountains. Through resprouting after fire, Erica establishes a positive fire feedback under certain burning regimes. However, present-day human activity in the Bale Mountains of Ethiopia includes fire and grazing systems that may have a negative impact on the resilience of the ericaceous ecosystem. Current knowledge of Erica–fire relationships is based on studies of modern vegetation, lacking a longer time perspective that can shed light on baseline conditions for the fire feedback. We hypothesize that fire has influenced Erica communities in the Bale Mountains at millennial time-scales. To test this, we (1) identify the fire history of the Bale Mountains through a pollen and charcoal record from Garba Guracha, a lake at 3950 m.a.s.l., and (2) describe the long-term bidirectional feedback between wildfire and Erica, which may control the ecosystem's resilience. Our results support fire occurrence in the area since ca 14 000 years ago, with particularly intense burning during the early Holocene, 10.8–6.0 cal ka BP. We show that a positive feedback between Erica abundance and fire occurrence was in operation throughout the Lateglacial and Holocene, and interpret the Ericaceous Belt of the Ethiopian mountains as a long-term fire resilient ecosystem. We propose that controlled burning should be an integral part of landscape management in the Bale Mountains National Park

    miniBELEN: a modular neutron counter for (a, n) reactions

    Get PDF
    miniBELEN is a modular and transportable neutron moderated counter with a nearly flat neutron detection efficiency up to 10 MeV. Modularity implies that the moderator can be reassembled in different ways in order to obtain different types of response. The detector has been developed in the context of the Measurement of Alpha Neutron Yields (MANY) collaboration, which is a scientific effort aiming to carry out measurements of (a, n) production yields, reaction cross-sections and neutron energy spectra. In this work we present and discuss several configurations of the miniBELEN detector. The experimental validation of the efficiency calculations using 252Cf sources and the measurement of the 27Al(a, n) 30P reaction is also presented.This work has been supported by the Spanish Ministerio de Economía y Competitividad under grants FPA2017-83946- C2-1 & C2-2 and PID2019-104714GB-C21 & C22, the Generalitat Valenciana Grant PROMETEO/2019/007, both cofounded by FEDER (EU), and the SANDA project funded under H2020-EURATOM-1.1 Grant No. 847552. The authors acknowledge the support from Centro de Microanálisis de Materiales (CMAM) - Universidad Autónoma de Madrid, for the beam time proposal (Comissioning of neutron detector systems for (a,݊n) reaction measurements) with code P01156, and its technical staff for their contribution to the operation of the accelerator.Article signat per 41 autors/es: N. Mont-Geli, A. Tarifeño-Saldivia, L.M. Fraile, S. Viñals, A. Perea, M. Pallàs, G. Cortés, E. Nácher, J.L. Tain, V. Alcayne, A. Algora, J. Balibrea-Correa, J. Benito, M.J.G. Borge, J.A. Briz, F. Calviño, D. Cano-Ott, A. De Blas, C. Domingo-Pardo, B. Fernández, R. Garcia, G. García, J. Gómez-Camacho, E.M. González-Romero, C. Guerrero, J. Lerendegui-Marco, M. Llanos, T. Martínez, E. Mendoza, J.R. Murias, S.E.A. Orrigo, A. Pérez de Rada, V. Pesudo, J. Plaza, J.M. Quesada, A. Sánchez, V. Sánchez-Tembleque, R. Santorelli, O. Tengblad, J.M. Udías and D. Villamarín.Postprint (published version

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde
    corecore