121 research outputs found

    Tailored Security and Safety for Pervasive Computing

    Full text link

    On the discovery of doubly-magic 48^{48}Ni

    Full text link
    The paper reports on the first observation of doubly-magic Nickel-48 in an experimental at the SISSI/LISE3 facility of GANIL. Four Nickel-48 isotopes were identified. In addition, roughly 100 Nickel-49, 50 Iron-45, and 290 Chromium-42 isotopes were observed. This opens the possibility to search for two-proton emission from these nuclei.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Crossing the Dripline to 11N Using Elastic Resonance Scattering

    Get PDF
    The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion completely analogous to its mirror partner, 11Be. A narrow resonance in the excitation function at 4.33 (+-0.05) MeV was also observed and assigned spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR

    Interactive models of communication at the nanoscale using nanoparticles that talk to one another

    Full text link
    [EN] 'Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating.A. L.-L. is grateful to 'La Caixa' Banking Foundation for his PhD fellowship. We wish to thank the Spanish Government (MINECO Projects MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged.Llopis-Lorente, A.; Díez, P.; Sánchez, A.; Marcos Martínez, MD.; Sancenón Galarza, F.; Martínez-Ruiz, P.; Villalonga, R.... (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications. 8:1-7. https://doi.org/10.1038/ncomms15511S178Tseng, R., Huang, J., Ouyang, J., Kaner, R. & Yang, Y. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 5, 1077–1080 (2005).Liu, R. & Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133, 20064–20067 (2011).Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).Tarn, D. et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res. 46, 792–801 (2013).Kline, T. & Paxton, W. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 117, 754–756 (2005).Akyildiz, I. F., Brunetti, F. & Blázquez, C. Nanonetworks: a new communication paradigm. Comput. Netw. 52, 2260–2279 (2008).Suda, T., Moore, M., Nakano, T., Egashira, R. & Enomoto, A. Exploratory research on molecular communication between nanomachines. Nat. Comput. 25, 1–30 (2005).Malak, D. & Akan, O. B. Molecular communication nanonetworks inside human body. Nano Commun. Netw. 3, 19–35 (2012).Akyildiz, I. F., Jornet, J. M. & Pierobon, M. Nanonetworks: a new frontier in communications. Commun. ACM 54, 84–89 (2011).Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V. & Shuai, J. Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11, 135–148 (2012).Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).Dickschat, J. S. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343–369 (2010).Kerényi, Á., Bihary, D., Venturi, V. & Pongor, S. Stability of multispecies bacterial communities: signaling networks may stabilize microbiomes. PLoS ONE 8, e57947 (2013).Gotti, C. & Clementi, F. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396 (2004).Betke, K. M., Wells, C. A. & Hamm, H. E. GPCR mediated regulation of synaptic transmission. Prog. Neurobiol. 96, 304–321 (2012).Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455–468 (2012).Ball, P. Chemistry meets computing. Nature 406, 118–120 (2000).de Silva, A. P. & McClenaghan, N. D. Molecular-Scale Logic Gates. Chem. Eur. J. 10, 574–586 (2004).Condon, A. Automata make antisense. Nature 429, 351–352 (2004).Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).Angelos, S., Yang, Y. W., Khashab, N. M., Stoddart, J. F. & Zink, J. I. Dual-controlled nanoparticles exhibiting AND logic. J. Am. Chem. Soc. 131, 11344–11346 (2009).Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).Lee, J. W. & Klajn, R. Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2 . Chem. Commun. 51, 2036–2039 (2015).Liu, D. et al. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed. 50, 4103–4107 (2011).Chitode, J. S. Communication Theory Technical Publications (2010).Wood, J. T. Communication in Our Lives Wadsworth (2009).Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J. & Zink, J. I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc. 135, 14000–14003 (2013).Baeza, A., Guisasola, E., Ruiz-Hernández, E. & Vallet-Regí, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517–524 (2012).Zhang, Z. et al. Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 using DNA or molecular biomarkers as triggering stimuli. ACS Nano 7, 8455–8468 (2013).Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504–1534 (2012).Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).Coll, C., Bernardos, A., Martínez-Máñez, R. & Sancenón, F. Gated silica mesoporous supports for controlled release and signaling applications. Acc. Chem. Res. 46, 339–349 (2013).Aznar, E. et al. Gated materials for on-command release of guest molecules. Chem. Rev. 116, 561–718 (2016).Díez, P. et al. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).Villalonga, R. et al. Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. Chem. Eur. J. 19, 7889–7894 (2013).Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S. & Donkor, K. K. Determination of thermodynamic pKa values of benzimidazole and benzimidazole derivatives by capillary electrophoresis. J. Sep. Sci. 32, 1087–1095 (2009).Sheffner, A. L. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-L-cysteine. Ann. N. Y. Acad. Sci. 106, 298–310 (1963).Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature 241, 20–22 (1973).Yousef, F. O., Zughul, M. B. & Badwan, A. A. The modes of complexation of benzimidazole with aqueous β-cyclodextrin explored by phase solubility, potentiometric titration, 1H-NMR and molecular modeling studies. J. Incl. Phenom. Macrocycl. Chem. 57, 519–523 (2007).Sánchez, A., Díez, P., Martínez-Ruíz, P., Villalonga, R. & Pingarrón, J. M. Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochem. Commun. 30, 51–54 (2013).Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. & Koucheryavy, Y. The internet of Bio-Nano things. IEEE Commun. Mag. 53, 32–40 (2015).Sancenón, F., Pascual, L., Oroval, M., Aznar, E. & Martínez-Máñez, R. Gated silica mesoporous materials in sensing applications. ChemistryOpen 4, 418–437 (2015).Akyildiz, I. & Jornet, J. The Internet of nano-things. IEEE Wirel. Commun. 17, 58–63 (2010).Giménez, C. et al. Towards chemical communication between gated nanoparticles. Angew. Chem. Int. Ed. 53, 12629–12633 (2014).Davis, B. G., Lloyd, R. C. & Jones, J. B. Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J. Org. Chem. 63, 9614–9615 (1998)

    Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Enzyme Inhibition by a Substrate

    Full text link
    We consider a realization of the XOR logic gate in a process biocatalyzed by an enzyme (here horseradish peroxidase: HRP), the function of which can be inhibited by a substrate (hydrogen peroxide for HRP), when the latter is inputted at large enough concentrations. A model is developed for describing such systems in an approach suitable for evaluation of the analog noise amplification properties of the gate. The obtained data are fitted for gate quality evaluation within the developed model, and we discuss aspects of devising XOR gates for functioning in "biocomputing" systems utilizing biomolecules for information processing

    Computing with bacterial constituents, cells and populations: from bioputing to bactoputing

    Get PDF
    The relevance of biological materials and processes to computing—aliasbioputing—has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating

    Nature of intensity and phase modulations in stimulated Brillouin scattering

    Get PDF
    The nature of stimulated Brillouin scattering (SBS) temporal modulations for a focused beam in a finite-length cell with homogeneous medium is examined numerically. The finite phonon lifetime produces deterministic oscillations at the threshold while the inclusion of the random noise as an initiation source of SBS leads to stochastic fluctuations in Stokes intensity and phase. A unified study of both modulations under different parameters is presented. The results indicate a large useful parameter space for excellent Stokes beam quality.Shahraam Afshaarvahid, Vladimyros Devrelis, and Jesper Munc
    corecore