2,498 research outputs found

    Spin entangled two-particle dark state in quantum transport through coupled quantum dots

    Full text link
    We present a transport setup of coupled quantum dots that enables the creation of spatially separated spin-entangled two-electron dark states. We prove the existence of an entangled transport dark state by investigating the system Hamiltonian without coupling to the electronic reservoirs. In the transport regime the entangled dark state which corresponds to a singlet has a strongly enhanced Fano factor compared to the dark state which corresponds to a mixture of the triplet states. Furthermore we calculate the concurrence of the occupying electrons to show the degree of entanglement in the transport regime.Comment: 9 pages and 3 figure

    E-Freeze - a randomised controlled trial evaluating the clinical and cost effectiveness of a policy of freezing embryos followed by thawed frozen embryo transfer compared with a policy of fresh embryo transfer, in women undergoing in vitro fertilisation : a statistical analysis plan

    Get PDF
    The E-Freeze Collaborators Group contributed to the overall design of the E-Freeze trial. We would like to thank the Data Monitoring Committee, particularly Professor Elizabeth Allen, and Charles Opondo for their helpful comments and guidance on the statistical analysis plan.Peer reviewe

    Novel components of the Toxoplasma inner membrane complex revealed by BioID.

    Get PDF
    UNLABELLED:The inner membrane complex (IMC) of Toxoplasma gondii is a peripheral membrane system that is composed of flattened alveolar sacs that underlie the plasma membrane, coupled to a supporting cytoskeletal network. The IMC plays important roles in parasite replication, motility, and host cell invasion. Despite these central roles in the biology of the parasite, the proteins that constitute the IMC are largely unknown. In this study, we have adapted a technique named proximity-dependent biotin identification (BioID) for use in T. gondii to identify novel components of the IMC. Using IMC proteins in both the alveoli and the cytoskeletal network as bait, we have uncovered a total of 19 new IMC proteins in both of these suborganellar compartments, two of which we functionally evaluate by gene knockout. Importantly, labeling of IMC proteins using this approach has revealed a group of proteins that localize to the sutures of the alveolar sacs that have been seen in their entirety in Toxoplasma species only by freeze fracture electron microscopy. Collectively, our study greatly expands the repertoire of known proteins in the IMC and experimentally validates BioID as a strategy for discovering novel constituents of specific cellular compartments of T. gondii. IMPORTANCE:The identification of binding partners is critical for determining protein function within cellular compartments. However, discovery of protein-protein interactions within membrane or cytoskeletal compartments is challenging, particularly for transient or unstable interactions that are often disrupted by experimental manipulation of these compartments. To circumvent these problems, we adapted an in vivo biotinylation technique called BioID for Toxoplasma species to identify binding partners and proximal proteins within native cellular environments. We used BioID to identify 19 novel proteins in the parasite IMC, an organelle consisting of fused membrane sacs and an underlying cytoskeleton, whose protein composition is largely unknown. We also demonstrate the power of BioID for targeted discovery of proteins within specific compartments, such as the IMC cytoskeleton. In addition, we uncovered a new group of proteins localizing to the alveolar sutures of the IMC. BioID promises to reveal new insights on protein constituents and interactions within cellular compartments of Toxoplasma

    Upf1p, a Highly Conserved Protein Required for Nonsense-Mediated mRNA Decay, Interacts with the Nuclear Pore Proteins Nup100p and Nup116p

    Get PDF
    Saccharomyces cerevisiae Upf1p is a 971-amino-acid protein that is required for the nonsense-mediated mRNA decay (NMD) pathway, a pathway that degrades mRNAs with premature translational termination codons. We have identified a two-hybrid interaction between Upf1p and the nuclear pore (Nup) proteins, Nup100p and Nup116p. Both nucleoporins predominantly localize to the cytoplasmic side of the nuclear pore and participate in mRNA transport. The two-hybrid interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is dependent on the presence of the C-terminal 158 amino acids of Upf1p. Nup100p and Nup116p can be coimmunoprecipitated from whole-cell extracts with Upf1p, confirming in vitro the interaction identified by the two-hybrid analysis. Finally, we see a genetic interaction between UPF1 and NUP100. The growth of upf1Δ, can1-100 cells is inhibited by canavanine. The deletion of NUP100 allows upf1Δ, can1-100 cells to grow in the presence of canavanine. Physiologically, the interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is significant because it suggests a mechanism to ensure that Upf1p associates with newly synthesized mRNA as it is transported from the nucleus to the cytoplasm prior to the pioneer round of translation

    The interstellar medium and feedback in the progenitors of the compact passive galaxies at z~2

    Get PDF
    Quenched galaxies at z>2 are nearly all very compact relative to z~0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present restframe UV spectra of Lyman-break galaxies (LBGs) at z~3 selected to be candidate progenitors of quenched galaxies at z~2 based on their compact restframe optical sizes and high surface density of star-formation. We compare their UV properties to those of more extended LBGs of similar mass and star formation rate (non-candidates). We find that candidate progenitors have faster ISM gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyman-alpha and interstellar absorption lines in that their Lyman-alpha emission remains strong despite high interstellar absorption, possibly indicating that the neutral HI fraction is patchy such that Lyman-alpha photons can escape. We detect stronger CIV P-Cygni features (emission and absorption) and HeII emission in candidates, indicative of larger populations of metal rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyman-alpha properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z~2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally-sized LBGs at these early epochs.Comment: Accepted for publication in the Astrophysical Journa

    Multidecadal Basal Melt Rates and Structure of the Ross Ice Shelf, Antarctica, Using Airborne Ice Penetrating Radar

    Get PDF
    Basal melting of ice shelves is a major source of mass loss from the Antarctic Ice Sheet. In situ measurements of ice shelf basal melt rates are sparse, while the more extensive estimates from satellite altimetry require precise information about firn density and characteristics of near‐surface layers. We describe a novel method for estimating multidecadal basal melt rates using airborne ice penetrating radar data acquired during a 3‐year survey of the Ross Ice Shelf. These data revealed an ice column with distinct upper and lower units whose thicknesses change as ice flows from the grounding line toward the ice front. We interpret the lower unit as continental meteoric ice that has flowed across the grounding line and the upper unit as ice formed from snowfall onto the relatively flat ice shelf. We used the ice thickness difference and strain‐induced thickness change of the lower unit between the survey lines, combined with ice velocities, to derive basal melt rates averaged over one to six decades. Our results are similar to satellite laser altimetry estimates for the period 2003–2009, suggesting that the Ross Ice Shelf melt rates have been fairly stable for several decades. We identify five sites of elevated basal melt rates, in the range 0.5–2 m a⁻Âč, near the ice shelf front. These hot spots indicate pathways into the sub‐ice‐shelf ocean cavity for warm seawater, likely a combination of summer‐warmed Antarctic Surface Water and modified Circumpolar Deep Water, and are potential areas of ice shelf weakening if the ocean warms

    CANDELS: The progenitors of compact quiescent galaxies at z~2

    Get PDF
    We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.Comment: Submitted to the Astrophysical Journal Letters, 6 pages, 4 figure

    Correlates of Successful Aging in Racial and Ethnic Minority Women Age 80 Years and Older: Findings from the Women’s Health Initiative

    Get PDF
    BACKGROUND: Most research has focused on definitions and predictors of successful aging. However, racial/ethnic minorities are often under represented in this research. Given that the U.S. population is aging and becoming more racially diverse, we examined correlates of "successful aging," as defined by physical functioning and overall quality of life (QOL), among racial/ethnic minority women aged 80 years and older in the Women's Health Initiative. METHODS: Participants included 1,924 racial/ethnic minority women (African Americans, Asian/Pacific Islanders, Hispanic/Latinos, and American Indian/Alaskan Natives) 80 years of age and older who are enrolled in the Women's Health Initiative and have physical functioning data after turning 80 years of age. Analysis of covariance was used to examine between and within group differences in physical functioning and selfrated overall QOL for African Americans, Asian/Pacific Islanders, and Hispanic/Latinos. RESULTS: We found no significant differences in physical functioning between racial/ethnic minority groups in adjusted analyses. However, overall QOL was significantly different between racial/ethnic minority groups. Age, recreational physical activity, and overall selfrated health were independent correlates of physical functioning across racial/ethnic minority groups, whereas overall selfrated health was the only consistent correlate of overall QOL across the minority groups for the within minority group comparisons. CONCLUSIONS: Between racial/ethnic minority group differences in physical functioning are largely explained by demographic, psychosocial, behavioral, and health-related variables. We found statistically significant differences in selfrated overall QOL between racial/ethnic minority groups

    NGC 2770 - a supernova Ib factory?

    Full text link
    NGC 2770 has been the host of three supernovae of Type Ib during the last 10 years, SN 1999eh, SN 2007uy and SN 2008D. SN 2008D attracted special attention due to the serendipitous discovery of an associated X-ray transient. In this paper, we study the properties of NGC 2770 and specifically the three SN sites to investigate whether this galaxy is in any way peculiar to cause a high frequency of SNe Ib. We model the global SED of the galaxy from broadband data and derive a star-formation and SN rate comparable to the values of the Milky Way. We further study the galaxy using longslit spectroscopy covering the major axis and the three SN sites. From the spectroscopic study we find subsolar metallicities for the SN sites, a high extinction and a moderate star-formation rate. In a high resolution spectrum, we also detect diffuse interstellar bands in the line-of-sight towards SN 2008. A comparison of NGC 2770 to the global properties of a galaxy sample with high SN occurance (at least 3 SN in the last 100 years) suggests that NGC 2770 is not particularly destined to produce such an enhancement of observed SNe observed. Its properties are also very different from gamma-ray burst host galaxies. Statistical considerations on SN Ib detection rates give a probability of ~1.5% to find a galaxy with three Ib SNe detected in 10 years. The high number of rare Ib SNe in this galaxy is therefore likely to be a coincidence rather than special properties of the galaxy itself. NGC 2770 has a small irregular companion, NGC 2770B, which is highly starforming, has a very low mass and one of the lowest metallicities detected in the nearby universe as derived from longslit spectroscopy. In the most metal poor part, we even detect Wolf-Rayet features, against the current models of WR stars which require high metallicities.Comment: 15 pages, 10 figures, submitted to Ap

    Factors Associated with Nursing Home Admission after Stroke in Older Women

    Get PDF
    We examined the social and economic factors associated with nursing home (NH) admission in older women, overall and post-stroke
    • 

    corecore