123 research outputs found
Benefits of amplification for speech recognition in background noise
The purpose of the present study was to examine the benefits of providing audible speech to listeners with sensorineural hearing loss when the speech is presented in a background noise. Previous studies have shown that when listeners have a severe hearing loss in the higher frequencies, providing audible speech (in a quiet background) to these higher frequencies usually results in no improvement in speech recognition. In the present experiments, speech was presented in a background of multitalker babble to listeners with various severities of hearing loss. The signal was low-pass filtered at numerous cutoff frequencies and speech recognition was measured as additional high-frequency speech information was provided to the hearing-impaired listeners. It was found in all cases, regardless of hearing loss or frequency range, that providing audible speech resulted in an increase in recognition score. The change in recognition as the cutoff frequency was increased, along with the amount of audible speech information in each condition (articulation index), was used to calculate the "efficiency" of providing audible speech. Efficiencies were positive for all degrees of hearing loss. However, the gains in recognition were small, and the maximum score obtained by an listener was low, due to the noise background. An analysis of error patterns showed that due to the limited speech audibility in a noise background, even severely impaired listeners used additional speech audibility in the high frequencies to improve their perception of the "easier" features of speech including voicin
Spectral peak resolution and speech recognition in quiet: Normal hearing, hearing impaired and cochlear implant listeners
Spectral peak resolution was investigated in normal hearing (NH), hearing impaired (HI), and cochlear implant (CI) listeners. The task involved discriminating between two rippled noise stimuli in which the frequency positions of the log-spaced peaks and valleys were interchanged. The ripple spacing was varied adaptively from 0.13 to 11.31 ripples/octave, and the minimum ripple spacing at which a reversal in peak and trough positions could be detected was determined as the spectral peak resolution threshold for each listener. Spectral peak resolution was best, on average, in NH listeners, poorest in CI listeners, and intermediate for HI listeners. There was a significant relationship between spectral peak resolution and both vowel and consonant recognition in quiet across the three listener groups. The results indicate that the degree of spectral peak resolution required for accurate vowel and consonant recognition in quiet backgrounds is around 4 ripples/octave, and that spectral peak resolution poorer than around 1–2 ripples/octave may result in highly degraded speech recognition. These results suggest that efforts to improve spectral peak resolution for HI and CI users may lead to improved speech recognitio
Speech recognition in noise for cochlear implant listeners: Benefits of residual hearing
The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage
Continuous kisspeptin restores luteinizing hormone pulsatility following cessation by a neurokinin B antagonist in female sheep
Pulsatile secretion of the gonadotropin-releasing hormone (GnRH) drives pulsatile secretion of the luteinizing hormone (LH), with evidence that this depends on kisspeptin (Kiss) input to GnRH neurons. Kiss administration causes acute GnRH/LH secretion, and electrophysiological data suggest that Kiss neurons may act in a phasic manner to drive GnRH secretion, but there is not definitive evidence for this. The product of the Kiss-1 gene is proteolytically cleaved to smaller products, and the 10 amino acid C-terminal product (Kiss-10) displays full bioactivity. We have shown previously that continuous delivery of Kiss-10 to anestrous ewes can cause a surge in GnRH secretion and ovulation and increases LH pulse frequency in humans. Here, we tested the hypothesis that continuous Kiss-10 delivery can support pulsatile GnRH/LH secretion in the sheep. Neurokinin B (NKB) provides positive drive to Kiss neurons, so we therefore infused an NKB antagonist (ANT-08) intracerebroventricularly to induce cessation of pulsatile GnRH/LH secretion, with or without concomitant continuous Kiss-10 infusion. ANT-08 suppressed GnRH/LH pulsatility, which was immediately restored with continuous Kiss-10 infusion. These data support the notion that Kiss-10 action is downstream of NKB signaling and that continuous Kiss-10 stimulation of GnRH neurons is sufficient to support a pulsatile pattern of GnRH/LH secretion. This offers further support to the theory that GnRH pulse generation is intrinsic to GnRH neurons and that pulsatile GnRH release can be affected with continuous stimulation by Kiss-10.The Universities of Pretoria and Cape Town, South African Medical Research Council, and National Research Foundation. I.J.C. was funded by the National Health and Medical Research Council of Australia.https://academic.oup.com/endo2019-02-01hj2018ImmunologyPhysiolog
Cochlear implant users' spectral ripple resolution
This study revisits the issue of the spectral ripple resolution abilities of cochlear implant (CI) users. The spectral ripple resolution of recently implanted CI recipients (implanted during the last 10 years) were compared to those of CI recipients implanted 15 to 20 years ago, as well as those of normal-hearing and hearing-impaired listeners from previously published data from Henry, Turner, and Behrens [J. Acoust. Soc. Am. 118, 1111-1121 (2005)]. More recently, implanted CI recipients showed significantly better spectral ripple resolution. There is no significant difference in spectral ripple resolution for these recently implanted subjects compared to hearing-impaired (acoustic) listeners. The more recently implanted CI users had significantly better pre-operative speech perception than previously reported CI users. These better pre-operative speech perception scores in CI users from the current study may be related to better performance on the spectral ripple discrimination task; however, other possible factors such as improvements in internal and external devices cannot be excluded
Ontogeny and thermogenic role for sternal fat in female sheep
Brown adipose tissue acting through a unique uncoupling protein (UCP1) has a critical role in preventing hypothermia in new-born sheep but is then considered to rapidly disappear during postnatal life. The extent to which the anatomical location of fat influences postnatal development and thermogenic function, particularly following feeding, in adulthood, are not known and were both examined in our study. Changes in gene expression of functionally important pathways (i.e. thermogenesis, development, adipogenesis and metabolism) were compared between sternal and retroperitoneal fat depots together with a representative skeletal muscle over the first month of postnatal life, coincident with the loss of brown fat and accumulation of white fat. In adult sheep, implanted temperature probes were used to characterise the thermogenic response of fat and muscle to feeding and the effects of reduced or increased adiposity. UCP1 was more abundant within sternal than retroperitoneal fat and was only retained in the sternal depot of adults. Distinct differences in the abundance of gene pathway markers were apparent between tissues, with sternal fat exhibiting some similarities with muscle that were not apparent in the retroperitoneal depot. In adults, the post-prandial rise in temperature was greater and more prolonged in sternal than retroperitoneal fat and muscle, a difference that was maintained with altered adiposity. In conclusion, sternal adipose tissue retains UCP1 into adulthood when it shows a greater thermogenic response to feeding than muscle and retroperitoneal fat. Sternal fat may be more amenable to targeted interventions that promote thermogenesis in large mammals
Impact of fatigue as the primary determinant of functional limitations among patients with post-COVID-19 syndrome: a cross-sectional observational study
OBJECTIVES: To describe self-reported characteristics and symptoms of treatment-seeking patients with post-COVID-19 syndrome (PCS). To assess the impact of symptoms on health-related quality of life (HRQoL) and patients' ability to work and undertake activities of daily living. DESIGN: Cross-sectional single-arm service evaluation of real-time user data. SETTING: 31 post-COVID-19 clinics in the UK. PARTICIPANTS: 3754 adults diagnosed with PCS in primary or secondary care deemed suitable for rehabilitation. INTERVENTION: Patients using the Living With Covid Recovery digital health intervention registered between 30 November 2020 and 23 March 2022. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was the baseline Work and Social Adjustment Scale (WSAS). WSAS measures the functional limitations of the patient; scores of ≥20 indicate moderately severe limitations. Other symptoms explored included fatigue (Functional Assessment of Chronic Illness Therapy-Fatigue), depression (Patient Health Questionnaire-Eight Item Depression Scale), anxiety (Generalised Anxiety Disorder Scale, Seven-Item), breathlessness (Medical Research Council Dyspnoea Scale and Dyspnoea-12), cognitive impairment (Perceived Deficits Questionnaire, Five-Item Version) and HRQoL (EQ-5D). Symptoms and demographic characteristics associated with more severe functional limitations were identified using logistic regression analysis. RESULTS: 3541 (94%) patients were of working age (18-65); mean age (SD) 48 (12) years; 1282 (71%) were female and 89% were white. 51% reported losing ≥1 days from work in the previous 4 weeks; 20% reported being unable to work at all. Mean WSAS score at baseline was 21 (SD 10) with 53% scoring ≥20. Factors associated with WSAS scores of ≥20 were high levels of fatigue, depression and cognitive impairment. Fatigue was found to be the main symptom contributing to a high WSAS score. CONCLUSION: A high proportion of this PCS treatment-seeking population was of working age with over half reporting moderately severe or worse functional limitation. There were substantial impacts on ability to work and activities of daily living in people with PCS. Clinical care and rehabilitation should address the management of fatigue as the dominant symptom explaining variation in functionality
Identification of Bone Marrow Cell Subpopulations Associated With Improved Functional Outcomes in Patients With Chronic Left Ventricular Dysfunction: An Embedded Cohort Evaluation of the FOCUS-CCTRN Trial
In the current study, we sought to identify bone marrow-derived mononuclear cell (BM-MNC) subpopulations associated with a combined improvement in left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and maximal oxygen consumption (VO2 max) in patients with chronic ischemic cardiomyopathy 6 months after receiving transendocardial injections of autologous BM-MNCs or placebo. For this prospectively planned analysis, we conducted an embedded cohort study comprising 78 patients from the FOCUS-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Baseline BM-MNC immunophenotypes and progenitor cell activity were determined by flow cytometry and colony-forming assays, respectively. Previously stable patients who demonstrated improvement in LVEF, LVESV, and VO2 max during the 6-month course of the FOCUS-CCTRN study (group 1, n = 17) were compared to those who showed no change or worsened in one to three of these endpoints (group 2, n = 61) and to a subset of patients from group 2 who declined in all three functional endpoints (group 2A, n = 11). Group 1 had higher frequencies of B-cell and CXCR4(+) BM-MNC subpopulations at study baseline than group 2 or 2A. Furthermore, patients in group 1 had fewer endothelial colony-forming cells and monocytes/macrophages in their bone marrow than those in group 2A. To our knowledge, this is the first study to show that in patients with ischemic cardiomyopathy, certain bone marrow-derived cell subsets are associated with improvement in LVEF, LVESV, and VO2 max at 6 months. These results suggest that the presence of both progenitor and immune cell populations in the bone marrow may influence the natural history of chronic ischemic cardiomyopathy-even in stable patients. Thus, it may be important to consider the bone marrow composition and associated regenerative capacity of patients when assigning them to treatment groups and evaluating the results of cell therapy trials
Route of drug administration in out-of-hospital cardiac arrest: A protocol for a randomised controlled trial (PARAMEDIC-3)
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).AIMS: The PARAMEDIC-3 trial evaluates the clinical and cost-effectiveness of an intraosseous first strategy, compared with an intravenous first strategy, for drug administration in adults who have sustained an out-of-hospital cardiac arrest. METHODS: PARAMEDIC-3 is a pragmatic, allocation concealed, open-label, multi-centre, superiority randomised controlled trial. It will recruit 15,000 patients across English and Welsh ambulance services. Adults who have sustained an out-of-hospital cardiac arrest are individually randomised to an intraosseous access first strategy or intravenous access first strategy in a 1:1 ratio through an opaque, sealed envelope system. The randomised allocation determines the route used for the first two attempts at vascular access. Participants are initially enrolled under a deferred consent model.The primary clinical-effectiveness outcome is survival at 30-days. Secondary outcomes include return of spontaneous circulation, neurological functional outcome, and health-related quality of life. Participants are followed-up to six-months following cardiac arrest. The primary health economic outcome is incremental cost per quality-adjusted life year gained. CONCLUSION: The PARAMEDIC-3 trial will provide key information on the clinical and cost-effectiveness of drug route in out-of-hospital cardiac arrest.Trial registration: ISRCTN14223494, registered 16/08/2021, prospectively registered.Peer reviewe
Rapid copper acquisition by developing murine mesothelioma: Decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration
Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an antiangiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes
- …