6 research outputs found
Contribution of the phosphodiesterases in the regulation of vascular cAMP in pathophysiological situation
LâAMPc est un second messager exerçant un rĂŽle vasculoprotecteur majeur, par ses effets relaxants et inhibiteurs de la prolifĂ©ration et de la migration cellulaires. Les concentrations intracellulaires dâAMPc sont finement rĂ©gulĂ©es par leur synthĂšse via les adĂ©nylates cyclases et leur dĂ©gradation par les phosphodiestĂ©rases (PDEs). Nous avons Ă©valuĂ© lâimpact de lâenvironnement cellulaire sur la voie de signalisation couplĂ©e au rĂ©cepteur ÎČ-adrĂ©nergique (ÎČ-AR/AMPc/PDE) dans les cellules musculaires lisses vasculaires (CMLVs), ainsi que les altĂ©rations potentielles de celle-ci en situation pathologique dâinsuffisance cardiaque (IC).Notre premiĂšre Ă©tude montre que dans les CMLs dâaorte de rat en culture, adoptant un phĂ©notype synthĂ©tique, la voie de signalisation ÎČ-AR/AMPc/PDE est hautement modulĂ©e par la densitĂ© cellulaire Ainsi, une faible densitĂ© cellulaire est associĂ©e Ă une rĂ©gulation nĂ©gative de lâexpression fonctionnelle du rĂ©cepteur ÎČ1-AR, Ă une activitĂ© hydrolytique des PDEs-AMPc plus faible et Ă des concentrations dâAMPc intracellulaire plus Ă©levĂ©es que celles observĂ©es dans des cellules confluentes.Notre deuxiĂšme Ă©tude montre que dans lâaorte de rat, lâIC est associĂ©e Ă une dysfonction endothĂ©liale (DE), une hyperrĂ©activitĂ© aux agents contractants et une altĂ©ration de la fonction et de lâexpression des PDEs-AMPc. Nos rĂ©sultats suggĂšrent que lâaltĂ©ration de la voie du NO/GMPc suite Ă la DE conduit Ă une hyper-activation de la PDE3, qui masque la fonction de la PDE4 et altĂšre la relaxation ÎČ-AR.Lâensemble de ce travail met en Ă©vidence le rĂŽle critique de l'environnement cellulaire dans le contrĂŽle de la voie ÎČ-AR/AMPc/PDE des CMLVsMots clĂ©s : Muscle lisse vasculaire, rĂ©cepteur ÎČ-adrĂ©nergique, AMPc, phosphodiestĂ©rases, densitĂ© cellulaire, insuffisance cardiaqueCAMP is second messenger which plays a prominent vasculoprotective role by its relaxing effects and inhibition of cell proliferation and migration. Intracellular cAMP level is regulated by its synthesis by adenylate cyclase and its degradation by phosphodiesterases (PDEs). We evaluated the influence of cellular environment on signaling pathway coupled to ÎČ-adrenoceptors (ÎČ-AR/cAMP/PDE) on vascular smooth muscle cells (VSMCs), as well as potential alterations in heart failure (HF).The first study showed that in cultured rat aortic SMCs exhibiting synthetic phenotype, the ÎČ-AR/cAMP/PDE signaling pathway is highly modulated by the cellular density.Thus, the low density state being associated to a downregulation of the ÎČ1-AR, a lower cAMP-PDE activity and a higher basal [cAMP]i compared to confluent cells.Our second study showed that in rat aorta, HF is associated with endothelial dysfunction, hyper-reactivity to contractile agents and an alteration of function and expression of cAMP-PDEs. Our results suggest that NO/cGMP pathway alteration following the ED in HF leads to hyper-activation of PDE3 which masks PDE4 function and alters ÎČ-adrenoceptor relaxationThus, our works highlights the critical role of the cellular environment in controlling the vascular ÎČ-AR signaling.Keywords: Vascular smooth muscle, ÎČ-adrenoceptor, cAMP, phosphodiesterases, cellular density, heart failure
ContrĂŽle de la voie de lâAMPc vasculaire par les phosphodiestĂ©rases en situation physiopathologique.
CAMP is second messenger which plays a prominent vasculoprotective role by its relaxing effects and inhibition of cell proliferation and migration. Intracellular cAMP level is regulated by its synthesis by adenylate cyclase and its degradation by phosphodiesterases (PDEs). We evaluated the influence of cellular environment on signaling pathway coupled to ÎČ-adrenoceptors (ÎČ-AR/cAMP/PDE) on vascular smooth muscle cells (VSMCs), as well as potential alterations in heart failure (HF).The first study showed that in cultured rat aortic SMCs exhibiting synthetic phenotype, the ÎČ-AR/cAMP/PDE signaling pathway is highly modulated by the cellular density.Thus, the low density state being associated to a downregulation of the ÎČ1-AR, a lower cAMP-PDE activity and a higher basal [cAMP]i compared to confluent cells.Our second study showed that in rat aorta, HF is associated with endothelial dysfunction, hyper-reactivity to contractile agents and an alteration of function and expression of cAMP-PDEs. Our results suggest that NO/cGMP pathway alteration following the ED in HF leads to hyper-activation of PDE3 which masks PDE4 function and alters ÎČ-adrenoceptor relaxationThus, our works highlights the critical role of the cellular environment in controlling the vascular ÎČ-AR signaling.Keywords: Vascular smooth muscle, ÎČ-adrenoceptor, cAMP, phosphodiesterases, cellular density, heart failure.LâAMPc est un second messager exerçant un rĂŽle vasculoprotecteur majeur, par ses effets relaxants et inhibiteurs de la prolifĂ©ration et de la migration cellulaires. Les concentrations intracellulaires dâAMPc sont finement rĂ©gulĂ©es par leur synthĂšse via les adĂ©nylates cyclases et leur dĂ©gradation par les phosphodiestĂ©rases (PDEs). Nous avons Ă©valuĂ© lâimpact de lâenvironnement cellulaire sur la voie de signalisation couplĂ©e au rĂ©cepteur ÎČ-adrĂ©nergique (ÎČ-AR/AMPc/PDE) dans les cellules musculaires lisses vasculaires (CMLVs), ainsi que les altĂ©rations potentielles de celle-ci en situation pathologique dâinsuffisance cardiaque (IC).Notre premiĂšre Ă©tude montre que dans les CMLs dâaorte de rat en culture, adoptant un phĂ©notype synthĂ©tique, la voie de signalisation ÎČ-AR/AMPc/PDE est hautement modulĂ©e par la densitĂ© cellulaire Ainsi, une faible densitĂ© cellulaire est associĂ©e Ă une rĂ©gulation nĂ©gative de lâexpression fonctionnelle du rĂ©cepteur ÎČ1-AR, Ă une activitĂ© hydrolytique des PDEs-AMPc plus faible et Ă des concentrations dâAMPc intracellulaire plus Ă©levĂ©es que celles observĂ©es dans des cellules confluentes.Notre deuxiĂšme Ă©tude montre que dans lâaorte de rat, lâIC est associĂ©e Ă une dysfonction endothĂ©liale (DE), une hyperrĂ©activitĂ© aux agents contractants et une altĂ©ration de la fonction et de lâexpression des PDEs-AMPc. Nos rĂ©sultats suggĂšrent que lâaltĂ©ration de la voie du NO/GMPc suite Ă la DE conduit Ă une hyper-activation de la PDE3, qui masque la fonction de la PDE4 et altĂšre la relaxation ÎČ-AR.Lâensemble de ce travail met en Ă©vidence le rĂŽle critique de l'environnement cellulaire dans le contrĂŽle de la voie ÎČ-AR/AMPc/PDE des CMLVsMots clĂ©s : Muscle lisse vasculaire, rĂ©cepteur ÎČ-adrĂ©nergique, AMPc, phosphodiestĂ©rases, densitĂ© cellulaire, insuffisance cardiaqu
Phosphodiestérases des nucléotides cycliques dans le coeur et les vaisseaux : une perspective thérapeutique
International audienceCyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), thereby regulating multiple aspects of cardiac and vascular muscle functions. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families that are not only responsible for the Abbreviations: AKAP, A-kinase anchoring protein
Ătude de faisabilitĂ© dâun dĂ©pistage organisĂ© du cancer bronchopulmonaire chez des sujets exposĂ©s professionnellement Ă des agents cancĂ©rogĂšnes pulmonaires â « LUCSO »
International audienc
Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension
International audienceBackground Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K+ channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). Methods and Results We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. Conclusions In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted