122 research outputs found

    Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos

    Get PDF
    We present evidence that insulin-like growth factor II (IGF-II) mediates growth in early mouse embryos and forms a pathway in which imprinted genes influence development during preimplantation stages, mRNA and protein for IGF-II were expressed in preimplantation mouse embryos, but the related factors IGF-I and insulin were not. IGF-I and insulin receptors and the IGF-II/mannose-6-phosphate receptor were expressed. Exogenous IGF-II or IGF-I increased the cell number in cultured blastocysts, but a mutant form of IGF-II that strongly binds only the IGF-II receptor did not. Reduction of IGF-II expression by antisense IGF-II oligonucleotides decreased the rate of progression to the blastocyst stage and decreased the cell number in blastocysts. Preimplantation parthenogenetic mouse embryos expressed mRNA for the IGF-II receptor but not for either IGF-II ligand or the IGF-I receptor, indicating that the latter genes are not expressed when inherited maternally. These data imply that some growth factors and receptors, regulated by genomic imprinting, may control cell proliferation from the earliest stages of embryonic development

    Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression.

    Get PDF
    Abstract. We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone

    Regulation of MMP-9 by p53 in first trimester cytotrophoblastic cells

    Get PDF
    BACKGROUND: The matrix metalloproteinase (MMP) family is known to play a key role in tissue remodelling during embryonic development and in pathological conditions, such as cardiovascular disease, arthritis and cancer metastasis. It has been shown previously that p53 regulates positively or negatively the expression of different MMPs. Because of p53 overexpression in trophoblastic cells, and its potential role in regulating MMP-2 and MMP-9 expression in different cell lines, we hypothesized that the expression of MMP-9 could also be regulated by p53 in first trimester cytotrophoblasts (CTB). METHODS and RESULTS: Transfection experiments in CTB demonstrated that wild-type p53 down-regulates the -670 (P < 0.001) but not the -531 and -90 human MMP-9 promoter/CAT reporter plasmid activity, whereas p53 mutants partially lost this repressive activity. However, endogenous p53 is not able to regulate MMP-9 expression in CTB. The presence of high molecular weight complexes of p53 in CTB suggests a potential mechanism of inactivation of p53 transcriptional activity towards MMPs in these cells. CONCLUSIONS: Although p53 is mutated in trophoblast, it is functionally incompetent towards MMPs in these cells

    Basement Membrane and Repair of Injury to Peripheral Nerve: Defining a Potential Role for Macrophages, Matrix Metalloproteinases, and Tissue Inhibitor of Metalloproteinases-1

    Get PDF
    Injury to a peripheral nerve is followed by a remodeling process consisting of axonal degeneration and regeneration. It is not known how Schwann cell–derived basement membrane is preserved after injury or what role matrix metalloproteinases (MMPs) and their inhibitors play in axonal degeneration and regeneration. We showed that the MMPs gelatinase B (MMP-9), stromelysin-1 (MMP-3), and the tissue inhibitor of MMPs (TIMP)-1 were induced in crush and distal segments of mouse sciatic nerve after injury. TIMP-1 inhibitor activity was present in excess of proteinase activity in extracts of injured nerve. TIMP-1 protected basement membrane type IV collagen from degradation by exogenous gelatinase B in cryostat sections of nerve in vitro. In vivo, during the early phase (1 d after crush) and later phase (4 d after crush) after injury, induction of TNF-α and TGF-β1 mRNAs, known modulators of TIMP-1 expression, were paralleled by an upregulation of TIMP-1 and gelatinase B mRNAs. At 4 days after injury, TIMP-1, gelatinase B, and TNF-α mRNAs were localized to infiltrating macrophages and Schwann cells in the regions of nerve infiltrated by elicited macrophages. TIMP-1 and cytokine mRNA expression was upregulated in undamaged nerve explants incubated with medium conditioned by macrophages or containing the cytokines TGF-β1, TNF-α, and IL-1α. These results show that TIMP-1 may protect basement membrane from uncontrolled degradation after injury and that cytokines produced by macrophages may participate in the regulation of TIMP-1 levels during nerve repair

    Beneficial and Detrimental Effects of Plasmin(ogen) during Infection and Sepsis in Mice

    Get PDF
    Plasmin has been proposed to be an important mediator during inflammation/infection. In this study, by using mice lacking genes for plasminogen, tissue-type plasminogen activator (tPA), and urokinase-type PA (uPA), we have investigated the functional roles of active plasmin in infection and sepsis. Two models were used: an infection model by intravenous injection of 1×107 CFU of S. aureus, and a sepsis model by intravenous injection of 1.6×108 CFU of S. aureus. We found that in the infection model, wild-type (WT) mice showed significantly higher survival rates than plasminogen-deficient (plg-/-) mice. However, in the sepsis model, plg-/- or tPA-/-/uPA-/- mice showed the highest survival rate whereas WT and tPA+/-/uPA+/- mice showed the lowest survival rate, and plg+/-, tPA-/-, and uPA-/- mice had an intermediate survival rate. These results indicate that the levels of active plasmin are critical in determining the survival rate in the sepsis, partly through high levels of inflammatory cytokines and enhanced STAT3 activation. We conclude that plasmin is beneficial in infection but promotes the production of inflammatory cytokines in sepsis that may cause tissue destruction, diminished neutrophil function, and an impaired capacity to kill bacteria which eventually causes death of these mice

    Expression profile of genes regulated by activity of the Na-H exchanger NHE1

    Get PDF
    BACKGROUND: In mammalian cells changes in intracellular pH (pH(i)), which are predominantly controlled by activity of plasma membrane ion exchangers, regulate a diverse range of normal and pathological cellular processes. How changes in pH(i )affect distinct cellular processes has primarily been determined by evaluating protein activities and we know little about how pH(i )regulates gene expression. RESULTS: A global profile of genes regulated in mammalian fibroblasts by decreased pH(i )induced by impaired activity of the plasma membrane Na-H exchanger NHE1 was characterized by using cDNA microarrays. Analysis of selected genes by quantitative RT-PCR, TaqMan, and immunoblot analyses confirmed results obtained from cDNA arrays. Consistent with established roles of pH(i )and NHE1 activity in cell proliferation and oncogenic transformation, grouping regulated genes into functional categories and biological pathways indicated a predominant number of genes with altered expression were associated with growth factor signaling, oncogenesis, and cell cycle progression. CONCLUSION: A comprehensive analysis of genes selectively regulated by pH(i )provides insight on candidate targets that might mediate established effects of pH(i )on a number of normal and pathological cell functions

    Murine Matrix Metalloproteinase 9 Gene. 5'-Upstream Region Contains Cis-Acting Elements for Expression in Osteoclasts and Migrating Keratinocytes in Transgenic Mice

    Full text link
    Knowledge about the regulation of cell lineage-specific expression of extracellular matrix metalloproteinases is limited. In the present work, the murine matrix metalloproteinase 9 (MMP-9) gene was shown to contain 13 exons, and the 2.8-kilobase pair upstream region was found to contain several common promoter elements including a TATA box-like motif, three GC boxes, four AP-1-like binding sites, an AP-2 site, and three PEA3 consensus sequences that may be important for basic activity of the gene. In order to identify cell-specific regulatory elements, constructs containing varying lengths of the upstream region in front of a LacZ reporter gene were made and studied for expression in transgenic mice generated by microinjection into fertilized oocytes. Analyses of the mice revealed that the presence of sequences between -2722 and -7745 allowed for expression in osteoclasts and migrating keratinocytes, i. e. cells that have been shown to normally express the enzyme in vivo. The results represent the first in vivo demonstration of the location of cell-specific control elements in a matrix metalloproteinase gene and show that element(s) regulating most cell-specific activities of 92-kDa type collagenase are located in the -2722 to -7745 base pair region

    Expression of Stromelysin-3 in the Human Placenta and Placental Bed

    Full text link
    Human placentation is mediated by fetal trophoblastic cells which penetrate into the decidualized uterine endometrium. Trophoblast invasion requires the precisely regulated secretion of specific proteinases able to degrade the endometrial basement membranes and extracellular matrix. To document further the involvement of these proteinases during human placentation, we evaluated in vivo the expression of stromelysin-3, a member of the metalloproteinase family, during the first and third trimesters of pregnancy, by means of immunohistochemistry, in situ hybridization and Northern blot analysis. Human extravillous trophoblasts invading the maternal decidua produced stromelysin-3 during both, the first and third trimesters of pregnancy, but to a lesser extent during the latter. In floating villi, stromelysin-3 expression was restricted to the syncytiotrophoblasts that line intervillous vascular spaces. In conclusion, stromelysin-3 is expressed by differentiated, non-proliferative villous and extravillous trophoblastic cells in early and late placental beds and villi, and its pattern of expression evolves during pregnancy. Our observations suggest that stromelysin-3 could play a role in human placentation

    Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development

    Full text link
    Gastrulation in mice is associated with the start of extreme proliferation and differentiation. The potential cost to the embryo of a very rapid proliferation rate is a high production of damaged cells. We demonstrate a novel surveillance mechanism for the elimination of cells damaged by ionizing radiation during mouse gastrulation. During this restricted developmental window, the embryo becomes hypersensitive to DNA damage induced by low dose irradiation (&lt;0.5 Gy) and undergoes apoptosis without cell cycle arrest. Intriguingly, embryonic cells, including germ cell progenitors, but not extraembryonic cells, become hypersensitive to genotoxic stress and undergo Atm- and p53-dependent apoptosis. Thus, hypersensitivity to apoptosis in the early mouse embryo is a cell fate-dependent mechanism to ensure genomic integrity during a period of extreme proliferation and differentiation.</jats:p
    corecore