258 research outputs found

    Spatial and temporal dynamics of multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh.

    Get PDF
    Published onlineJournal ArticlePopulations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women's empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries.The authors gratefully acknowledge the residents of Khulna and Barisal who gave up many hours of their time to be interviewed on multiple occasions. We are indebted to their generosity and patience. In addition we would like to acknowledge the important contribution of Tauhida Nasrin and colleagues at Associates for Community and Population Research and the team of enumerators who ensured the smooth implementation of the survey; Masfiqus Salehin and Rezaur Rahman at Bangladesh University of Engineering and Technology, Munir Ahmed at Technological Assistance for Rural Advancement and Hamidul Huq at University of Liberal Arts Bangladesh for their assistance in defining the social-ecological systems; Mahin Al Nahian for his assistance in implementing the survey; Rakin Muhtadee Shihab for completing the final translation of the questionnaire to Bengali; Munir Ahmed, Abir Ahammad Talukdar and Ali Mohammad Rezaie for assistance with qualitative fieldwork and pretesting; Abul Kashem Mohammad Hasan at the Center for Environmental and Geographic Information Services and Muhammad Zahirul Haq at icddr,b for the GIS work. The survey was part of the project Assessing Health, Livelihoods, Ecosystem Services And Poverty Alleviation In Populous Deltas (Espa Deltas; Grant No. NE/J000892/1), part of the Ecosystem Services for Poverty Alleviation (ESPA) programme. The ESPA programme is funded by the Department for International Development, the Economic and Social Research Council and the Natural Environment Research Council. Helen Adams had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis

    Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes

    Get PDF
    This paper discusses the potential of polymer networks, templated by crystalline metal–organic framework (MOF), as novel selective layer material in thin film composite membranes. The ability to create mechanically stable membranes with an ultra-thin selective layer of advanced polymer materials is highly desirable in membrane technology. Here, we describe a novel polymeric membrane, which is synthesized via the conversion of a surface anchored metal–organic framework (SURMOF) into a surface anchored gel (SURGEL). The SURGEL membranes combine the high variability in the building blocks and the possibility to control the network topology and membrane thickness of the SURMOF synthesis with high mechanical and chemical stability of polymers. Next to the material design, the transfer of membranes to suitable supports is also usually a challenging task, due to the fragile nature of the ultra-thin films. To overcome this issue, we utilized a porous support on top of the membrane, which is mechanically stable enough to allow for the easy membrane transfer from the synthesis substrate to the final membrane support. To demonstrate the potential for gas separation of the synthesized SURGEL membranes, as well as the suitability of the transfer method, we determined the permeance for eight gases with different kinetic diameters

    Uracil DNA N-Glycosylase Promotes Assembly of Human Centromere Protein A

    Get PDF
    Uracil is removed from DNA by the conserved enzyme Uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin

    Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila

    Deficient mismatch repair: Read all about it (Review)

    Get PDF
    Defects in the DNA mismatch repair (MMR) proteins, result in a phenotype called microsatellite instability (MSI), occurring in up to 15% of sporadic colorectal cancers. Approximately one quarter of colon cancers with deficient MMR (dMMR) develop as a result of an inherited predisposition syndrome, Lynch syndrome (formerly known as HNPCC). It is essential to identify patients who potentially have Lynch syndrome, as not only they, but also family members, may require screening and monitoring. Diagnostic criteria have been developed, based primarily on Western populations, and several methodologies are available to identify dMMR tumours, including immunohistochemistry and microsatellite testing. These criteria have provided evidence supporting the introduction of reflex testing. Yet, it is becoming increasingly clear that tests have a limited sensitivity and specificity and may yet be superseded by next generation sequencing. In this review, the limitations of diagnostic criteria are discussed, and current and emerging screening technologies explained. There is now useful evidence supporting the prognostic and predictive value of dMMR status in colorectal tumours, but much less is known about their value in extracolonic tumours, that may also feature in Lynch syndrome. This review assesses current literature relating to dMMR in endometrial, ovarian, gastric and melanoma cancers, which it would seem, may benefit from large-scale clinical trials in order to further close the gap in knowledge between colorectal and extracolonic tumours

    A Chemical Analog of Curcumin as an Improved Inhibitor of Amyloid Abeta Oligomerization

    Get PDF
    Amyloid-like plaques are characteristic lesions defining the neuropathology of Alzheimer's disease (AD). The size and density of these plaques are closely associated with cognitive decline. To combat this disease, the few therapies that are available rely on drugs that increase neurotransmission; however, this approach has had limited success as it has simply slowed an imminent decline and failed to target the root cause of AD. Amyloid-like deposits result from aggregation of the Aβ peptide, and thus, reducing amyloid burden by preventing Aβ aggregation represents an attractive approach to improve the therapeutic arsenal for AD. Recent studies have shown that the natural product curcumin is capable of crossing the blood-brain barrier in the CNS in sufficient quantities so as to reduce amyloid plaque burden. Based upon this bioactivity, we hypothesized that curcumin presents molecular features that make it an excellent lead compound for the development of more effective inhibitors of Aβ aggregation. To explore this hypothesis, we screened a library of curcumin analogs and identified structural features that contribute to the anti-oligomerization activity of curcumin and its analogs. First, at least one enone group in the spacer between aryl rings is necessary for measureable anti-Aβ aggregation activity. Second, an unsaturated carbon spacer between aryl rings is essential for inhibitory activity, as none of the saturated carbon spacers showed any margin of improvement over that of native curcumin. Third, methoxyl and hydroxyl substitutions in the meta- and para-positions on the aryl rings appear necessary for some measure of improved inhibitory activity. The best lead inhibitors have either their meta- and para-substituted methoxyl and hydroxyl groups reversed from that of curcumin or methoxyl or hydroxyl groups placed in both positions. The simple substitution of the para-hydroxy group on curcumin with a methoxy substitution improved inhibitor function by 6-7-fold over that measured for curcumin

    Curcumin Enhances Neurogenesis and Cognition in Aged Rats: Implications for Transcriptional Interactions Related to Growth and Synaptic Plasticity

    Get PDF
    Background: Curcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear. Methodology: We assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via exon array analysis of cortical and hippocampal mRNA transcription. The results revealed a transcriptional network interaction of genes involved in neurotransmission, neuronal development, signal transduction, and metabolism in response to the curcumin treatment. Conclusions: The results suggest a neurogenesis- and cognition-enhancing potential of prolonged curcumin treatment i

    DNA glycosylases: in DNA repair and beyond

    Get PDF
    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity
    • …
    corecore