370 research outputs found
A Predictive Algorithm For Wetlands In Deep Time Paleoclimate Models
Methane is a powerful greenhouse gas produced in wetland environments via microbial action in anaerobic conditions. If the location and extent of wetlands are unknown, such as for the Earth many millions of years in the past, a model of wetland fraction is required in order to calculate methane emissions and thus help reduce uncertainty in the understanding of past warm greenhouse climates. Here we present an algorithm for predicting inundated wetland fraction for use in calculating wetland methane emission fluxes in deep time paleoclimate simulations. The algorithm determines, for each grid cell in a given paleoclimate simulation, the wetland fraction predicted by a nearest neighbours search of modern day data in a space described by a set of environmental, climate and vegetation variables. To explore this approach, we first test it for a modern day climate with variables obtained from observations and then for an Eocene climate with variables derived from a fully coupled global climate model (HadCM3BL-M2.2). Two independent dynamic vegetation models were used to provide two sets of equivalent vegetation variables which yielded two different wetland predictions. As a first test the method, using both vegetation models, satisfactorily reproduces modern data wetland fraction at a course grid resolution, similar to those used in paleoclimate simulations. We then applied the method to an early Eocene climate, testing its outputs against the locations of Eocene coal deposits. We predict global mean monthly wetland fraction area for the early Eocene of 8 to 10 × 106km2 with corresponding total annual methane flux of 656 to 909 Tg, depending on which of two different dynamic global vegetation models are used to model wetland fraction and methane emission rates. Both values are significantly higher than estimates for the modern-day of 4 × 106km2 and around 190Tg (Poulter et. al. 2017, Melton et. al., 2013
Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.
Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history
Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo
In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Nino warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C)/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH4)/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important
Praktijkimplementatie zuiveringstechnieken
To apply to the Dutch generic obligation to purify discharge water, each horticultural company needs to treat it’s discharge water with a technology that removes 95% of plant protection products. This report shows the process that growers need to go through to make a good choice for a purification technology: mapping of water flows, decrease the amount of discharge water, determine the strategy to apply to the generic obligation and make a choice for a purification technology. For a cucumber production company and a company that combines vegetable plant propagation and growth of potted plants this process is followed. A design for a purification system is developed and built for a semi-practice scale cucumber and sweet pepper production system. In the semi-practice scale and the cucumber production company, an ozone installation (Agrozone) is chosen, either to disinfect drain water and eventually purify discharge water. At the propagation company, an Opticlear Diamond (WaterIQ) is chosen to disinfect the drain water and eventually purify discharge water. For both installations the purification efficacy is measured. In the second part of the project the practical format for the generic obligation for discharge water purification is elaborated
Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)
Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator¿prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research
A new soil-based approach for empirical monitoring of enhanced rock weathering rates
Enhanced Rock Weathering (ERW) is a promising scalable and cost-effective
Carbon Dioxide Removal (CDR) strategy with significant environmental and
agronomic co-benefits. However, a major barrier to the widescale implementation
of ERW is a robust Monitoring, Reporting, and Verification (MRV) framework. To
successfully quantify the amount of carbon dioxide removed by ERW at scale, MRV
must be accurate, precise, and cost-effective. Here, we outline a new method
based on mass balance where metal analysis on soil samples is used to
accurately track the extent of in-situ alkaline mineral weathering. We show
that signal-to-noise issues of in-situ soil analysis can be mitigated by using
isotope-dilution mass spectrometry to reduce analytical error. We implement a
proof of concept experiment demonstrating the method in controlled mesocosms.
In our experiment, basalt feedstock is added to soil columns containing the
cereal crop Sorghum bicolor at a rate equivalent to 50 t ha-1. Using our
approach, we calculate an average initial CDR value of 2.24 +- 1.33 tCO2eq ha-1
from our experiments after 235 days, within error of an independent estimate
calculated using conventional elemental budgeting of reaction products. Our
result corresponds to an initial CDR efficiency of 24.4 +- 14.5 % for the
feedstock used. Our method provides a robust time-integrated estimate of
initial CDR, and offers a path to track and validate large-scale carbon removal
through ERW
Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results
We examined the changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVMs) obtained from the Inter-Sectoral Impact Model Intercomparison Project. Simulation results were obtained using five global climate models (GCMs) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (i.e., emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. At the end of the simulation period, changes from the year 2000 in all three variables varied considerably from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC and SOC projections, GVMs are the main influence on uncertainties (60 % and 90 %, respectively) rather than climate-driving scenarios (RCPs and GCMs). Moreover, the divergence of changes in vegetation carbon residence times is dominated by GVM uncertainty, particularly in the latter half of the 21st century. In addition, we found that the contribution of each uncertainty source is spatiotemporally heterogeneous and it differs among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division becomes cooler (from ca. 80 % in the equatorial division to 40 % in the snow division). Our results suggest that to assess climate change impacts on global ecosystem C cycling among each RCP scenario, the long-term C dynamics within the ecosystems (i.e., vegetation turnover and soil decomposition) are more critical factors than photosynthetic processes. The different trends in the contribution of uncertainty sources in each variable among climate divisions indicate that improvement of GVMs based on climate division or biome type will be effective. On the other hand, in dry regions, GCMs are the dominant uncertainty source in climate impact assessments of vegetation and soil C dynamics
In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops
The potential of large‐scale deployment of basalt to reduce N2O emissions from cultivated soils may contribute to climate stabilization beyond the CO2‐removal effect from enhanced weathering. We used 3 years of field observations from maize (Zea mays) and miscanthus (Miscanthus × giganteus) to improve the nitrogen (N) module of the DayCent model and evaluate the potential of basalt amendments to reduce N losses and increase yields from two bioenergy crops. We found 20%–60% improvement in our N2O flux estimates over previous model descriptions. Model results predict that the application of basalt would reduce N2O emissions by 16% in maize and 9% in miscanthus. Lower N2O emissions responded to increases in the N2:N2O ratio of denitrification with basalt‐induced increases in soil pH, with minor contributions from the impact of P additions (a minor component of some basalts) on N immobilization. The larger reduction of N2O emissions in maize than in miscanthus was likely explained by a synergistic effect between soil pH and N content, leading to a higher sensitivity of the N2:N2O ratio to changes in pH in heavily fertilized maize. Basalt amendments led to modest increases in modeled yields and the nitrogen use efficiency (i.e., fertilizer‐N recover in crop production) of maize but did not affect the productivity of miscanthus. However, enhanced soil P availability maintained the long‐term productivity of crops with high nutrient requirements. The alleviation of plant P limitation led to enhanced plant N uptake, thereby contributing to lower microbial N availability and N2O emissions from crops with high nutrient requirements. Our results from the improved model suggest that the large‐scale deployment of basalt, by reducing N2O fluxes of cropping systems, could contribute to the sustainable intensification of agriculture and enhance the climate mitigation potential of bioenergy with carbon capture and storage strategies
Recommended from our members
Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projections from four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify calculated uncertainty in global SOC stock projections from global and regional perspectives and give insight to the improvement of SOC-relevant processes in biome models. SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (i.e., RCP8.5), inconsistent estimates of impact on the total SOC (2099–2000) were obtained from different biome model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the increasing atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century across biome models. Using the time-series data of total global SOC simulated by each biome model, we analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (ΔT and ΔP respectively) in each biome model using a state-space model. This analysis suggests that ΔT explained global SOC stock changes in most models with a resolution of 1–2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 to 3.53 Pg C yr−1 among the biome models. However, ΔP had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the biome models, especially in boreal to arctic regions. Our study reveals considerable climate uncertainty in SOC decomposition responses to climate and CO2 change among biome models. Further research is required to improve our ability to estimate biospheric feedbacks through both SOC-relevant and vegetation-relevant processes
- …