143 research outputs found

    Association of anthropometric measures across the life-course with refractive error and ocular biometry at age 15 years

    Get PDF
    YesBackground A recent Genome-wide association meta-analysis (GWAS) of refractive error reported shared genetics with anthropometric traits such as height, BMI and obesity. To explore a potential relationship with refractive error and ocular structure we performed a life-course analysis including both maternal and child characteristics using data from the Avon Longitudinal Study of Parents and Children cohort. Methods Measures collected across the life-course were analysed to explore the association of height, weight, and BMI with refractive error and ocular biometric measures at age 15 years from 1613children. The outcome measures were the mean spherical equivalent (MSE) of refractive error (dioptres), axial length (AXL; mm), and radius of corneal curvature (RCC; mm). Potential confounding variables; maternal age at conception, maternal education level, parental socio-economic status, gestational age, breast-feeding, and gender were adjusted for within each multi-variable model. Results Maternal height was positively associated with teenage AXL (0.010 mm; 95% CI: 0.003, 0.017) and RCC (0.005 mm; 95% CI: 0.003, 0.007), increased maternal weight was positively associated with AXL (0.004 mm; 95% CI: 0.0001, 0.008). Birth length was associated with an increase in teenage AXL (0.067 mm; 95% CI: 0.032, 0.10) and flatter RCC (0.023 mm; 95% CI: 0.013, 0.034) and increasing birth weight was associated with flatter RCC (0.005 mm; 95% CI: 0.0003, 0.009). An increase in teenage height was associated with a lower MSE (− 0.007 D; 95% CI: − 0.013, − 0.001), an increase in AXL (0.021 mm; 95% CI: 0.015, 0.028) and flatter RCC (0.008 mm; 95% CI: 0.006, 0.010). Weight at 15 years was associated with an increase in AXL (0.005 mm; 95% CI: 0.001, 0.009). Conclusions At each life stage (pre-natal, birth, and teenage) height and weight, but not BMI, demonstrate an association with AXL and RCC measured at age 15 years. However, the negative association between refractive error and an increase in height was only present at the teenage life stage. Further research into the growth pattern of ocular structures and the development of refractive error over the life-course is required, particularly at the time of puberty

    Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules

    Get PDF
    For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH) against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein), Rabies virus (Glycoprotein) and H5N1 Influenza (Hemagglutinin 5) were selected from llama derived immune libraries by phage display. Neutralizing VHH recognizing different epitopes in the receptor binding sites on the spikes with affinities in the low nanomolar range were identified for all the three viruses by viral neutralization assays. By fusion of VHH with variable linker lengths, multimeric constructs were made that improved neutralization potencies up to 4,000-fold for RSV, 1,500-fold for Rabies virus and 75-fold for Influenza H5N1. The potencies of the VHH constructs were similar or better than best performing monoclonal antibodies. The cross protection capacity against different viral strains was also improved for all three viruses, both by multivalent (two or three identical VHH) and biparatopic (two different VHH) constructs. By combining a VHH neutralizing RSV subtype A, but not subtype B with a poorly neutralizing VHH with high affinity for subtype B, a biparatopic construct was made with low nanomolar neutralizing potency against both subtypes. Trivalent anti-H5N1 VHH neutralized both Influenza H5N1 clade1 and 2 in a pseudotype assay and was very potent in neutralizing the NIBRG-14 Influenza H5N1 strain with IC50 of 9 picomolar. Bivalent and biparatopic constructs against Rabies virus cross neutralized both 10 different Genotype 1 strains and Genotype 5. The results show that multimerization of VHH fragments targeting multiple epitopes on a viral trimeric spike protein is a powerful tool for anti-viral therapy to achieve "best-in-class" and broader neutralization capacity

    Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors.

    Get PDF
    Benzodiazepines can ameliorate social disturbances and increase social competition, particularly in high-anxious individuals. However, the neural circuits and mechanisms underlying benzodiazepines' effects in social competition are not understood. Converging evidence points to the mesolimbic system as a potential site of action for at least some benzodiazepine-mediated effects. Furthermore, mitochondrial function in the nucleus accumbens (NAc) has been causally implicated in the link between anxiety and social competitiveness. Here, we show that diazepam facilitates social dominance, ameliorating both the competitive disadvantage and low NAc mitochondrial function displayed by high-anxious rats, and identify the ventral tegmental area (VTA) as a key site of action for direct diazepam effects. We also show that intra-VTA diazepam infusion increases accumbal dopamine and DOPAC, as well as activity of dopamine D1- but not D2-containing cells. In addition, intra-NAc infusion of a D1-, but not D2, receptor agonist facilitates social dominance and mitochondrial respiration. Conversely, intra-VTA diazepam actions on social dominance and NAc mitochondrial respiration are blocked by pharmacological NAc micro-infusion of a mitochondrial complex I inhibitor or an antagonist of D1 receptors. Our data support the view that diazepam disinhibits VTA dopaminergic neurons, leading to the release of dopamine into the NAc where activation of D1-signaling transiently facilitates mitochondrial function, that is, increased respiration and enhanced ATP levels, which ultimately enhances social competitive behavior. Therefore, our findings critically involve the mesolimbic system in the facilitating effects of diazepam on social competition and highlight mitochondrial function as a potential therapeutic target for anxiety-related social dysfunctions

    Perineuronal Nets Play a Role in Regulating Striatal Function in the Mouse

    Get PDF
    The striatum is the primary input nucleus of the basal ganglia, a collection of nuclei that play important roles in motor control and associative learning. We have previously reported that perineuronal nets (PNNs), aggregations of chondroitin-sulfate proteoglycans (CSPGs), form in the matrix compartment of the mouse striatum during the second postnatal week. This period overlaps with important developmental changes, including the attainment of an adult-like gait. Here, we investigate the identity of the cells encapsulated by PNNs, characterize their topographical distribution and determine their function by assessing the impact of enzymatic digestion of PNNs on two striatum-dependent behaviors: ambulation and goal-directed spatial learning. We show PNNs are more numerous caudally, and that a substantial fraction (41%) of these structures surrounds parvalbumin positive (PV+) interneurons, while approximately 51% of PV+ cells are ensheathed by PNNs. The colocalization of these structures is greatest in dorsal, lateral and caudal regions of the striatum. Bilateral digestion of striatal PNNs led to an increase in both the width and variability of hind limb gait. Intriguingly, this also resulted in an improvement in the acquisition rate of the Morris water maze. Together, these data show that PNNs are associated with specific elements of striatal circuits and play a key role in regulating the function of this important structure in the mouse

    A Host Defense Mechanism Involving CFTR-Mediated Bicarbonate Secretion in Bacterial Prostatitis

    Get PDF
    BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(-) and HCO(3)(-), in mediating prostate HCO(3)(-) secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3)(-) content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3)(-) on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3)(-) secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3)(-) secretion may be up-regulated in prostatitis as a host defense mechanism

    The effect of nutritional supplementation on the multifocal electroretinogram in healthy eyes

    Get PDF
    BACKGROUND: Previous studies have demonstrated an increase in macular pigment optical density (MPOD) with lutein (L)-based supplementation in healthy eyes. However, not all studies have assessed whether this increase in MPOD is associated with changes to other measures of retinal function such as the multifocal ERG (mfERG). Some studies also fail to report dietary levels of L and zeaxanthin (Z). Because of the associations between increased levels of L and Z, and reduced risk of AMD, this study was designed to assess the effects of L-based supplementation on mfERG amplitudes and latencies in healthy eyes. METHODS: Multifocal ERG amplitudes, visual acuity, contrast sensitivity, MPOD and dietary levels of L and Z were assessed in this longitudinal, randomized clinical trial. Fifty-two healthy eyes from 52 participants were randomly allocated to receive a L-based supplement (treated group), or no supplement (non-treated group). RESULTS: There were 25 subjects aged 18-77 (mean age ± SD; 48 ± 17) in the treated group and 27 subjects aged 21-69 (mean age ± SD; 43 ± 16) in the non-treated group. All participants attended for three visits: visit one at baseline, visit two at 20 weeks and visit three at 40 weeks. A statistically significant increase in MPOD (F = 17.0, p ≤ 0.001) and shortening of mfERG ring 2 P1 latency (F = 3.69, p = 0.04) was seen in the treated group. CONCLUSIONS: Although the results were not clinically significant, the reported trend for improvement in MPOD and mfERG outcomes warrants further investigation

    Age-dependent effects of protein restriction on dopamine release

    Get PDF
    FUNDING AND DISCLOSURE This work was supported by the Biotechnology and Biological Sciences Research Council [grant # BB/M007391/1 to J.E.M.], the European Commission [grant # GA 631404 to J.E.M.], The Leverhulme Trust [grant # RPG-2017-417 to J.E.M.] and the Tromsø Research Foundation [grant # 19-SG-JMcC to J. E. M.). The authors declare no conflict of interest. ACKNOWLEDGEMENTS The authors would like to acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals.Peer reviewedPublisher PD

    Regulation of Alr1 Mg Transporter Activity by Intracellular Magnesium

    Get PDF
    Mg homeostasis is critical to eukaryotic cells, but the contribution of Mg transporter activity to homeostasis is not fully understood. In yeast, Mg uptake is primarily mediated by the Alr1 transporter, which also allows low affinity uptake of other divalent cations such as Ni2+, Mn2+, Zn2+ and Co2+. Using Ni2+ uptake to assay Alr1 activity, we observed approximately nine-fold more activity under Mg-deficient conditions. The mnr2 mutation, which is thought to block release of vacuolar Mg stores, was associated with increased Alr1 activity, suggesting Alr1 was regulated by intracellular Mg supply. Consistent with a previous report of the regulation of Alr1 expression by Mg supply, Mg deficiency and the mnr2 mutation both increased the accumulation of a carboxy-terminal epitope-tagged version of the Alr1 protein (Alr1-HA). However, Mg supply had little effect on ALR1 promoter activity or mRNA levels. In addition, while Mg deficiency caused a seven-fold increase in Alr1-HA accumulation, the N-terminally tagged and untagged Alr1 proteins increased less than two-fold. These observations argue that the Mg-dependent accumulation of the C-terminal epitope-tagged protein was primarily an artifact of its modification. Plasma membrane localization of YFP-tagged Alr1 was also unaffected by Mg supply, indicating that a change in Alr1 location did not explain the increased activity we observed. We conclude that variation in Alr1 protein accumulation or location does not make a substantial contribution to its regulation by Mg supply, suggesting Alr1 activity is directly regulated via as yet unknown mechanisms

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore