241 research outputs found

    Familiarization: A theory of repetition suppression predicts interference between overlapping cortical representations

    Get PDF
    Repetition suppression refers to a reduction in the cortical response to a novel stimulus that results from repeated presentation of the stimulus. We demonstrate repetition suppression in a well established computational model of cortical plasticity, according to which the relative strengths of lateral inhibitory interactions are modified by Hebbian learning. We present the model as an extension to the traditional account of repetition suppression offered by sharpening theory, which emphasises the contribution of afferent plasticity, by instead attributing the effect primarily to plasticity of intra-cortical circuitry. In support, repetition suppression is shown to emerge in simulations with plasticity enabled only in intra-cortical connections. We show in simulation how an extended ‘inhibitory sharpening theory’ can explain the disruption of repetition suppression reported in studies that include an intermediate phase of exposure to additional novel stimuli composed of features similar to those of the original stimulus. The model suggests a re-interpretation of repetition suppression as a manifestation of the process by which an initially distributed representation of a novel object becomes a more localist representation. Thus, inhibitory sharpening may constitute a more general process by which representation emerges from cortical re-organisation

    Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV

    Get PDF
    We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1 integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV recorded by the CDF II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are expected from standard model background processes. We place 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115 GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let

    Measurement of Ratios of Fragmentation Fractions for Bottom Hadrons in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    This paper describes the first measurement of b-quark fragmentation fractions into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result is based on a 360 pb-1 sample of data collected with the CDF II detector in p-pbar collisions at sqrt{s}=1.96 TeV. Semileptonic decays of B0, B+, and B_s mesons, as well as Lambda_b baryons, are reconstructed. For an effective bottom hadron p_T threshold of 7 GeV/c, the fragmentation fractions are measured to be f_u/f_d=1.054 +/- 0.018 (stat) +0.025-0.045(sys) +/- 0.058 (Br), f_s/(f_u+f_d)=0.160 +/- 0.005 (stat) +0.011-0.010 (sys) +0.057-0.034 (Br), and f_{Lambda_b}/(f_u+f_d)=0.281\pm0.012 (stat) +0.058-0.056 (sys) +0.128-0.086 (Br), where the uncertainty (Br) is due to uncertainties on measured branching ratios. The value of f_s/(f_u+f_d) agrees within one standard deviation with previous CDF measurements and the world average of this quantity, which is dominated by LEP measurements. However, the ratio f_{Lambda_b}/(f_u+f_d) is approximately twice the value previously measured at LEP. The approximately 2 sigma discrepancy is examined in terms of kinematic differences between the two production environments.Comment: Submitted to PRD, 54 pages, 53 plot

    Interplay of DNA supercoiling and catenation during the segregation of sister duplexes

    Get PDF
    The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimensional agarose gel electrophoresis with numerical simulations in order to better understand the relationship between the negative supercoiling of DNA generated by DNA gyrase and the DNA interlinking resulting from replication of circular DNA molecules. We showed that in those replication intermediates formed in vivo, catenation and negative supercoiling compete with each other. In interlinked molecules with high catenation numbers negative supercoiling is greatly limited. However, when interlinking decreases, as required for the segregation of newly replicated sister duplexes, their negative supercoiling increases. This observation indicates that negative supercoiling plays an active role during progressive decatenation of newly replicated DNA molecules in vivo

    Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays

    Get PDF
    We measure the mean lifetime, tau=2/(Gamma_L+Gamma_H), and the width difference, DeltaGamma=Gamma_L-Gamma_H, of the light and heavy mass eigenstates of the B0s meson, B0sL and B0sH, in B0s -> J/psi phi decays using 1.7 fb^-1 of data collected with the CDF II detector at the Fermilab Tevatron ppbar collider. Assuming CP conservation, a good approximation for the B0s system in the Standard Model, we obtain DeltaGamma = 0.076^+0.059_-0.063 (stat.) +- 0.006 (syst.) ps^-1 and tau = 1.52 +- 0.04 (stat.) +- 0.02 (syst.) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation. Dedicated to the memory of our dear friend and colleague, Michael P. Schmid

    Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We search for pair production of supersymmetric top quarks (~t_1), followed by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using 322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153 GeV/c^2. The limits are also applicable to the case of a third generation scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure

    Two-Particle Momentum Correlations in Jets Produced in ppbar Collisions at s**(1/2) = 1.96-TeV

    Get PDF
    We present the first measurement of two-particle momentum correlations in jets produced in ppˉp\bar p collisions at s=1.96\sqrt{s}=1.96 TeV. Results are obtained for charged particles within a restricted cone with an opening angle of 0.5 radians around the jet axis and for events with dijet masses between 66 and 563 GeV/c2^{2}. A comparison of the experimental data to theoretical predictions obtained for partons within the framework of resummed perturbative QCD in the next-to-leading log approximation (NLLA) shows that the parton momentum correlations survive the hadronization stage of jet fragmentation, giving further support to the hypothesis of local parton-hadron duality. The extracted value of the NLLA parton shower cutoff scale QeffQ_\mathit{eff} set equal to ΛQCD\Lambda_\mathit{QCD} is found to be (1.40.7+0.9)×100(1.4^{+0.9}_{-0.7})\times 100 MeV.Comment: Submitted to Phys.Rev.

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Search for resonant ttbar production in ppbar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We report on a search for narrow-width particles decaying to a top and antitop quark pair. The data set used in the analysis corresponds to an integrated luminosity of 680 pb^{-1} collected with the Collider Detector at Fermilab in Run II. We present 95% confidence level upper limits on the cross section times branching ratio. Assuming a specific topcolor-assisted technicolor production model, the leptophobic Z' with width \Gamma_{Z'}=0.012M_{Z'}, we exclude the mass range M_{Z'} < 725 GeV/c^2 at the 95% confidence level.Comment: 7 pages, 3 figures. submitted to Phys. Rev. Let

    Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    Reconstructable final state kinematics and charge assignment in the reaction ppbar->ttbar allows tests of discrete strong interaction symmetries at high energy. We define frame dependent forward-backward asymmetries for the outgoing top quark in both the ppbar and ttbar rest frames, correct for experimental distortions, and derive values at the parton-level. Using 1.9/fb of ppbar collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the Fermilab Tevatron, we measure forward-backward top quark production asymmetries in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} = 0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references and change of tex
    corecore