30 research outputs found

    Strategic analysis of the drought resilience of water supply systems

    Get PDF
    Severe droughts can result in shortages of water supplies, with widespread social and economic consequences. Here we use a coupled simulation model to assess the reliability of public water supplies in England, in the context of changing scenarios of water demand, water regulation and climate change. The coupled simulation model combines climate simulations, a national-scale hydrological model and a national-scale water resource systems model to demonstrate how extreme meteorological droughts translate into hydrological droughts and water shortages for water users. We use this model to explore the effectiveness of strategic water resource options that are being planned in England to secure water supplies to most of England's population up to a drought return period of 1 in 500 years. We conclude that it is possible to achieve a 1-in-500-years standard in locations where strategic resource options are used, while also reducing water abstraction to restore the aquatic environment. However, the target will be easier to achieve if effective steps are also taken to reduce water demand. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’

    IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation.

    Get PDF
    In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease

    Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations

    Get PDF
    Wetlands play a key role in hydrological and biogeochemical cycles and provide multiple ecosystem services to society. However, reliable data on the extent of global inundated areas and the magnitude of their contribution to local hydrological dynamics remain surprisingly uncertain. Global hydrological models and land surface models (LSMs) include only the most major inundation sources and mechanisms; therefore, quantifying the uncertainties in available data sources remains a challenge. We address these problems by taking a leading global data product on inundation extents (Global Inundation Extent from Multi-Satellites, GIEMS) and matching against predictions from a global hydrodynamic model (Catchment-based Macro-scale Floodplain – CaMa-Flood) driven by runoff data generated by a land surface model (Joint UK Land and Environment Simulator, JULES). The ability of the model to reproduce patterns and dynamics shown by the observational product is assessed in a number of case studies across the tropics, which show that it performs well in large wetland regions, with a good match between corresponding seasonal cycles. At a finer spatial scale, we found that water inputs (e.g. groundwater inflow to wetland) became underestimated in comparison to water outputs (e.g. infiltration and evaporation from wetland) in some wetlands (e.g. Sudd, Tonlé Sap), and the opposite occurred in others (e.g. Okavango) in our model predictions. We also found evidence for an underestimation of low levels of inundation in our satellite-based inundation data (approx. 10 % of total inundation may not be recorded). Additionally, some wetlands display a clear spatial displacement between observed and simulated inundation as a result of overestimation or underestimation of overbank flooding upstream. This study provides timely information on inherent biases in inundation prediction and observation that can contribute to our current ability to make critical predictions of inundation events at both regional and global levels

    Quantifying climate risks to infrastructure systems: a comparative review of developments across infrastructure sectors

    Get PDF
    Infrastructure systems are particularly vulnerable to climate hazards, such as flooding, wildfires, cyclones and temperature fluctuations. Responding to these threats in a proportionate and targeted way requires quantitative analysis of climate risks, which underpins infrastructure resilience and adaptation strategies. The aim of this paper is to review the recent developments in quantitative climate risk analysis for key infrastructure sectors, including water and wastewater, telecommunications, health and education, transport (seaports, airports, road, rail and inland waterways), and energy (generation, transmission and distribution). We identify several overarching research gaps, which include the (i) limited consideration of multi-hazard and multi-infrastructure interactions within a single modelling framework, (ii) scarcity of studies focusing on certain combinations of climate hazards and infrastructure types, (iii) difficulties in scaling-up climate risk analysis across geographies, (iv) increasing challenge of validating models, (v) untapped potential of further knowledge spillovers across sectors, (vi) need to embed equity considerations into modelling frameworks, and (vii) quantifying a wider set of impact metrics. We argue that a cross-sectoral systems approach enables knowledge sharing and a better integration of infrastructure interdependencies between multiple sectors

    Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element

    Get PDF
    A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30-to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 x 10(-31)).Peer reviewe

    Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element.

    Get PDF
    A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10)

    Prioritising climate adaptation options to minimise financial and distributional impacts of water supply disruptions

    No full text
    Climate-related disruptions to water supply infrastructure services incur direct financial losses to utilities (e.g. to repair damaged assets) and externalise a societal cost to domestic customers due to additional costs that they may incur (e.g. to acquire water from alternative sources). The latter often represents an uncompensated social burden, which should be properly accounted for in investment planning. Here we present a new framework for quantifying direct financial risks burdened by utilities and alternative water purchase losses incurred by domestic customers, including those in low-income groups, during flood- and drought-induced utility water supply disruptions. This framework enables the comparison of benefit-cost ratios of a portfolio of flood protection and leakage reduction for water supply systems across the island of Jamaica. A system-level optioneering analysis allows the identification of the optimal adaptation option per system. We estimate that 34% of systems would benefit from flood defences and 53% would benefit from leakage reduction to adaptation to droughts. The benefit that could be achieved by implementing all system optimised adaptation options is estimated to be 720 million Jamaican dollars per year on average, representing a substantial saving for the utility and its customers, including low-income customers. We identify options that offer strong synergies between economic and equity objectives for both types of adaptation option. The proposed framework is established to support the business case for climate adaptation in the water supply sector and to prioritise across flood and drought mitigation options. We take a first step towards mainstreaming equity considerations in water supply sector optioneering frameworks by estimating the contribution of adaptation options towards reducing household costs for low-income customers

    A Multi‐Hazard Risk Framework to Stress‐Test Water Supply Systems to Climate‐Related Disruptions

    No full text
    Abstract Water utilities' supply systems are vulnerable to several climate‐related hazards, including droughts, floods and cyclones. Here we propose a generally applicable framework for conducting multi‐hazard risk assessments of water supply systems and use it to quantify the impact of present and future climate extremes on the national water supply network in Jamaica. The proposed framework involves stress‐testing a model of the system with a large set of spatially coherent drought, cyclone and pluvial and fluvial flood events to calculate the number of water users whose supplies would be disrupted during an event, that is, the Customer disruption days (CDD). We estimate the total multi‐hazard annual expected disruption to be approximately 5 days per year per utility customer under present conditions. This is increased by a factor of between 2 and 2.5 when end‐of‐century climate scenarios are propagated through the model. Our analysis shows that more high probability drought events lead to greater CDD compared with asset damage events. However, extreme asset damage events, despite manifesting over shorter timescales (days) compared to drought events (months), can lead to more widespread CDD. This quantified risk framework would allow utility managers to compare the risk of both asset damage‐ and water shortage‐induced disruptions via a common, decision‐relevant metric. However, applications to other utilities would require tailored hazard modeling approaches. The proposed risk assessment is intended to inform prioritization of infrastructure investments, ranging from asset protection to drought mitigation projects, with the goal of enhancing water supply resilience in the face of a changing climate
    corecore